Ding, Wenjin und Bauer, Thomas (2024) Next-Gen Molten Salt TES Technology for Advanced Carnot Batteries. In: 4th International Workshop on Carnot Batteries. 4th International Workshop on Carnot Batteries, 2024-09-23 - 2024-09-25, Stuttgart, Germany.
PDF
1MB | |
PDF
1MB |
Kurzfassung
Large-scale molten salt thermal energy storage (MSTES) is a commercial technology in the concentrating solar power (CSP) application with the worldwide installed capacity of about 21 GWhel and an average storage duration of 7 h [1]. The major advantages of MSTES include the medium itself (inexpensive, non-toxic, non-pressurized, non-flammable), the possibility to provide high temperature superheated steam for power generation and large-scale commercially demonstrated storage systems (up to about 4 GWhth) as well as separated power components (e.g., heat exchangers) and capacity components (tanks) for constant temperature and power levels during charge and discharge [1]. MSTES could not only be utilized in CSP but also new fields of application, e.g., industrial processes, conventional power plants and electrical storage (e.g., power-to-heat-to-power (PtHtP) systems - Carnot battery (CB)) [1], [2]. MSTES has been used in several large-scale Carnot batteries (CBs) under commercial demonstration, construction or development, due to its low storage costs (CAPEX of about 20 USD/kWhth), safety and location independence, e.g., AES Andes 560MW Carnot battery in Chile [3], 20MW/240MWh Green Electricity Molten Salt Storage plant in China [4]. As shown in Fig. 1, these CBs generally consist of a molten salt e-heater to charge the MSTES system with low-cost excess renewable electricity from grid, a molten salt steam generator to provide superheated steam with the heat stored in MSTES and a power cycle (e.g., conventional steam Rankine power cycle SRPC) to generate the electricity (and heat) on demand [2]. Its round-trip electricity storage efficiency is mainly limited by the thermal-electric conversion efficiency of the power cycle (about 40% for the conventional SRPC) [2]. The MSTES systems in these CBs [2]-[4] mostly use Solar Salt (NaNO3-KNO3 60-40 wt%) with the limited operating temperature of 560°C due to thermal decomposition and corrosion, which leads to the inlet temperature of the steam turbine not higher than 550 °C and limited efficiency of the power cycle. In this work, an advanced CB with operating TES temperature higher than 700°C is proposed, which contains an advanced MSTES system (>700°C) and power cycle (e.g., supercritical CO2 Brayton power cycle, SCBPC) for a higher energy conversion efficiency (>50%) and lower levelized cost of storage (LCOS) [5]. The next-gen molten salt TES technology based on chlorides is such a promising advanced MSTES technology used in the advanced CB, and has low material costs (<0.35 USD/kg) and excellent thermophysical properties (e.g., high thermal stability >1000°C) [5]. Two of the largest challenges in upscaling of Chloride-MSTES are the low-cost and effective corrosion control of the molten chlorides and selection of affordable structural materials for low CAPEX and long lifetime. The R&D progress in corrosion control and process upscaling will be presented in this work. References [1] T. Bauer, et al., Molten salt storage for power generation. Chem. Ing. Tech., 93, No. 4, 534–546 (2021). [2] M. Geyer, F. Trieb, and S. Giuliano. Repurposing of existing coal-fired power plants into Thermal Storage Plants for renewable power in Chile. GIZ: Bonn, Germany (2020). [3] C. Murray, News: AES Andes looks to replace coal power plant in Chile with 560MW molten salt-based energy storage (Oct. 18, 2022), https://www.energy-storage.news/aes-andes-looks-to-replace-coal-power-plant-in-chile-with-560mw-molten-salt-based-energy-storage/ (accessed on Apr. 30, 2024). [4] China Solar Thermal Alliance, News (in Chinese): Containing 3 molten salt energy storage projects! First batch of new energy storage demonstration projects in "Fourteen Five -Year Plan" of Zhejiang Province released (Jun. 10, 2022), http://www.cnste.org/html/zixun/2022/0610/9088.html (accessed on Apr. 30, 2024). [5] W. Ding, T. Bauer, Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants, Engineering 7 (3), 334-347 (2021).
elib-URL des Eintrags: | https://elib.dlr.de/210306/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Zusätzliche Informationen: | This work has been performed in the project funded by DLR Department of Technology Marketing: Smart Technologies for Molten Salt Health Assessment in Long-Duration Energy Storage Systems (SmaTeAs) | ||||||||||||
Titel: | Next-Gen Molten Salt TES Technology for Advanced Carnot Batteries | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 23 September 2024 | ||||||||||||
Erschienen in: | 4th International Workshop on Carnot Batteries | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Molten salt, thermal energy storage (TES), Carnot Battery, sCO2 power cycle | ||||||||||||
Veranstaltungstitel: | 4th International Workshop on Carnot Batteries | ||||||||||||
Veranstaltungsort: | Stuttgart, Germany | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 23 September 2024 | ||||||||||||
Veranstaltungsende: | 25 September 2024 | ||||||||||||
Veranstalter : | DLR, KIT & University of Stuttgart | ||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||
DLR - Forschungsgebiet: | E SP - Energiespeicher | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Dekarbonisierte Industrieprozesse, E - Energiesystemtechnologie, E - Materialen für thermische Hochtemperaturtechnologien, E - Neue Wärmeträgerfluide, E - Verbrennungs- und Kraftwerkssysteme | ||||||||||||
Standort: | Stuttgart | ||||||||||||
Institute & Einrichtungen: | Institut für Technische Thermodynamik > Thermische Prozesstechnik | ||||||||||||
Hinterlegt von: | Ding, Wenjin | ||||||||||||
Hinterlegt am: | 17 Dez 2024 18:09 | ||||||||||||
Letzte Änderung: | 17 Dez 2024 18:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags