Banovic, Mladen und Hafemann, Thomas und Stück, Arthur (2024) Algorithmic Differentiation of the pythonOCC Geometric Modeling Library. In: 9th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2024. 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2024), 2024-06-03 - 2024-06-07, Lissabon, Portugal. doi: 10.23967/eccomas.2024.197.
![]() |
PDF
660kB |
Offizielle URL: https://www.scipedia.com/public/Banovic_et_al_2024a
Kurzfassung
Shape optimization workflows in the aeronautical and automotive industry often rely on high-fidelity numerical simulations (e.g. Computational Fluid Dynamics) and involve CAD-based parametrizations. Since such workflows may impose large computational costs, the optimization itself can be driven by efficient gradient-based methods. This approach, however, requires gradient (sensitivity) information from each component used in the optimization workflow, where the missing link are typically the so-called geometric sensitivities from CAD systems or libraries. To retrieve the exact sensitivity information, one can apply algorithmic differentiation (AD) to the CAD library if its source code is available. For instance, this was successfully demonstrated in the past by differentiating the widely-used C++ geometric kernel OpenCASCADE Technology (OCCT) using the AD tool ADOL-C. This study continues on the previously mentioned work and introduces the following novel contribution: a mixed-language AD of a hybrid Python/C++ geometric modeling library, namely pythonOCC. As its name suggests, pythonOCC provides Python wrappers for OCCT. With the mixed-language AD approach, one can propagate geometric sensitivities from Python to C++ and vice-versa, thus allowing the utilization of pythonOCC in CAD-based shape optimization workflows.
elib-URL des Eintrags: | https://elib.dlr.de/210295/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Algorithmic Differentiation of the pythonOCC Geometric Modeling Library | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 29 Oktober 2024 | ||||||||||||||||
Erschienen in: | 9th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.23967/eccomas.2024.197 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Algorithmic Differentiation (AD), Computer Aided Design (CAD), OpenCascade Technology (OCCT), Gradient-based Optimization, mixed-language AD | ||||||||||||||||
Veranstaltungstitel: | 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2024) | ||||||||||||||||
Veranstaltungsort: | Lissabon, Portugal | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 3 Juni 2024 | ||||||||||||||||
Veranstaltungsende: | 7 Juni 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung, L - Digitale Technologien | ||||||||||||||||
Standort: | Dresden | ||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaremethoden zur Produkt-Virtualisierung > Simulationsumgebungen | ||||||||||||||||
Hinterlegt von: | Banovic, Mladen | ||||||||||||||||
Hinterlegt am: | 13 Dez 2024 16:52 | ||||||||||||||||
Letzte Änderung: | 24 Mär 2025 17:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags