elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Evaluation of AI-based P&ID Digitization using Graph Similarity Learning

Hank, Brandon (2024) Evaluation of AI-based P&ID Digitization using Graph Similarity Learning. Masterarbeit, Heinrich Heine Universität Düsseldorf.

[img] PDF - Nur DLR-intern zugänglich
7MB

Kurzfassung

Piping and Instrumentation Diagrams (P&IDs) are plans that represent hydraulic systems in the mechanical industry. However, P&IDs are often available as image or PDF files. The demand is to assess alterations in the system or prevent technical failures. Therefore, there is an interest in the automated conversion of such plans into simulation models. The End-to-End Digitization pipeline presents a possibility for the reconstruction into a simulation model. During this pipeline, the crucial information displayed by symbols, texts, and lines of the P&IDs is detected, extracted and reconstructed as a graph by the pipelines module Plan Digitization. This pipeline’s evaluation system is based on a separate evaluation of the individual detection methods using object detection metrics precision and recall. However, this evaluation does not capture the accuracy of graph reconstruction. Since such P&ID datasets are not publicly accessible, synthetic plans function as training and validation data for the pipeline. A corresponding groundtruth graph exists for each synthetic plan. Exploiting this allows holistically evaluating the reconstruction of P&IDs using graph similarity. However, the computation of the most common graph similarity metrics, Graph Edit Distance (GED), is at least an NP hard problem. The calculation of this metric is exponentially time-consuming, with a linear increase in graph size. An alternative to estimating this metric in a reasonable time is GSL-GNN (Graph Similarity Learning-Graph Neural Network). These models allow the estimation of GED if trained on the same metric. The main proposal of this work is the creation of a promising holistic evaluation method using GSL-GNN models. Unfortunately, after a thorough and detailed analysis, the chosen models are less suitable for a holistic evaluation. The analysis shows that the performance of GSL-GNN models highly depends on the training datasets and lack of generalization. Another discovery is that Plan Digitization only reconstructs some P&ID as planar graphs. Also, the performance of symbol detection seems less connected to the quality of graph reconstruction.

elib-URL des Eintrags:https://elib.dlr.de/210272/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Evaluation of AI-based P&ID Digitization using Graph Similarity Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hank, Brandonbrandon.hank (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Open Access:Nein
Seitenanzahl:70
Status:veröffentlicht
Stichwörter:P&ID, automatic model generation, GSL, GED, graph edit distance
Institution:Heinrich Heine Universität Düsseldorf
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Automated Model Generation
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen
Institut für den Schutz terrestrischer Infrastrukturen
Hinterlegt von: Stürmer, Marius
Hinterlegt am:19 Dez 2024 10:33
Letzte Änderung:19 Dez 2024 10:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.