elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Influence of multimodal training data for segmentation

Tarant, Yannick und Ramirez Agudelo, Oscar Hernan und Schreiber, Lena (2024) Influence of multimodal training data for segmentation. SPIE. Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIII, 2024-04-21 - 2024-04-25, National Harbour, USA. doi: 10.1117/12.3012567.

[img] PDF
13MB

Kurzfassung

In order to protect and secure critical infrastructures, it is important to advance technologies for automated detection and mapping of crucial components like the pipes of fire suppression systems. This work explores the instance segmentation on such pipes in multimodal image media. Instance segmentation has been significantly enhanced by machine learning techniques, but faces complexities when the used RGB training set is limited and lacks diversity. In the means of improving the training efficiency, we study the influence of enhancing the training set with thermal infrared images on the models performance. In our study, we harnessed both RGB and infrared images captured from the same location. We employed Mask R-CNN with transfer learning from the COCO weights and trained multiple neural networks on different training set combinations with RGB images and thermal infrared images. In order to further enlarge each training data set, we implemented different augmentation methods in the training. Subsequently, we conducted fine-tuning and optimization procedures for the Mask R-CNN training and determined the quality of the pipe instance segmentation of the produced models on test sets containing RGB and infrared images. Using the Jaccard score we provide a quantitative measure of pipe segmentation. The results show that the addition of a comparatively low number of infrared images to the training process does not only improve the detection performance on infrared data, but also improves the models performance on RGB data. A SOTA comparison shows that the detection quality of our models is comparable with the detection results of Ultralytics YOLOv8 and Metas SAM, which are both more recently released.

elib-URL des Eintrags:https://elib.dlr.de/210263/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Influence of multimodal training data for segmentation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tarant, Yannickyannick.tarant (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ramirez Agudelo, Oscar HernanOscar.RamirezAgudelo (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schreiber, LenaLena.Schreiber (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:7 Juni 2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:XXXIII
DOI:10.1117/12.3012567
Verlag:SPIE
Name der Reihe:Signal Processing, Sensor/Information Fusion, and Target Recognition
Status:veröffentlicht
Stichwörter:Critical infrastructures, Automated detection, Instance segmentation, Machine learning, Multimodal image data, Thermal infrared images, Mask R-CNN, Training efficiency
Veranstaltungstitel:Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIII
Veranstaltungsort:National Harbour, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:21 April 2024
Veranstaltungsende:25 April 2024
Veranstalter :SPIE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Automated Model Generation
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen > Detektionssysteme
Institut für den Schutz terrestrischer Infrastrukturen
Hinterlegt von: Tarant, Yannick
Hinterlegt am:13 Dez 2024 14:12
Letzte Änderung:13 Dez 2024 14:12

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.