Sonnekalb, Tim und Madera Castro, Celestino und Gruner, Bernd und Brust, Clemens-Alexander und Amme, Wolfram (2024) Vulnerability Prediction and Assessment Using Software Product Metrics and Machine Learning: What Does Not Work. In: 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), Seiten 1123-1127. IEEE. 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security, 2024-07-01 - 2024-07-05, Cambridge, United Kingdom. doi: 10.1109/QRS-C63300.2024.00148. ISBN 979-8-3503-6565-8. ISSN 2693-9371.
PDF
- Nur DLR-intern zugänglich
416kB |
Kurzfassung
Software metrics can help developers improve their written code by providing an overview of already written code. In the long term, they can thus help increase the software's quality. There are a variety of metrics and tools that calculate them. This study aims to determine whether they can also be used to make statements about software security, particularly to predict the number of vulnerabilities present. We use the CVEfixes dataset, a recent version of the CVE database, extract the corresponding code with and without vulnerabilities and calculate the software metrics using Understand and Analizo tools. Based on these metrics, we try to predict the presence of a vulnerability or its severity using a neural network. Unfortunately, the network was not able to make any meaningful predictions from the metrics, so we are looking for causes of what can be improved in this context. We want to highlight issues that arise when calculating software metrics in open-source software.
elib-URL des Eintrags: | https://elib.dlr.de/210141/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Vulnerability Prediction and Assessment Using Software Product Metrics and Machine Learning: What Does Not Work | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 29 Oktober 2024 | ||||||||||||||||||||||||
Erschienen in: | 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/QRS-C63300.2024.00148 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1123-1127 | ||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||
ISSN: | 2693-9371 | ||||||||||||||||||||||||
ISBN: | 979-8-3503-6565-8 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | vulnerability prediction, software product metrics, machine learning | ||||||||||||||||||||||||
Veranstaltungstitel: | 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security | ||||||||||||||||||||||||
Veranstaltungsort: | Cambridge, United Kingdom | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 1 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 5 Juli 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Sichere Softwaretechnik | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datengewinnung und -mobilisierung | ||||||||||||||||||||||||
Hinterlegt von: | Sonnekalb, Tim | ||||||||||||||||||||||||
Hinterlegt am: | 19 Dez 2024 10:59 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Dez 2024 10:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags