elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detecting and Localizing Space Based Interference on GNSS Signals using Machine Learning

Patil, Akshata und Phelts, R. Eric und Walter, Todd und Thoelert, Steffen (2024) Detecting and Localizing Space Based Interference on GNSS Signals using Machine Learning. In: Proceedings of the 2024 International Technical Meeting of The Institute of Navigation, ION ITM 2024. ION ITM 2024, 2024-01-23 - 2024-01-25, Long Beach, USA. ISBN 978-0-936406-36-7. ISSN 2330-3646.

[img] PDF - Nur DLR-intern zugänglich bis Februar 2026
2MB

Offizielle URL: https://www.ion.org/publications/browse.cfm?proceedingsID=164

Kurzfassung

Global Navigation Satellite Systems (GNSS) heavily depend on low-power signals, which operate below the noise floor. This makes them susceptible to interference that can significantly disrupt navigation. Such interference can degrade a receiver's accuracy and reliability in generating Position Navigation and Timing (PNT) solutions and even prevent it from acquiring and tracking nearby GNSS signals. Ground-based interference is relatively easy to identify with a single receiver, its sources can be diverse and widespread. Space-based interference, on the other hand, is difficult to detect without an extensive receiver network, followed by additional complications in identifying its source. One instance of a space-based interference that began in June 2021 led to the investigation and detection of an unusual power spike in the B3/E6 band, centered at 1268.52 MHz using Trimble's global network of 43 multifrequency receivers. This network is spread across the US and Europe as described in Patil et al., (2023). The interference event, exhibiting a distinct pattern, was confirmed to be space-based due to its simultaneous impact on the entire receiver network for over 24 hours. This paper extends that previous work by further characterizing the interference on B3I, modeling the potential effects of different interferers on various GNSS frequencies, and developing a method for streamlining the process of detecting a space-based interference using machine learning. The goal is to enhance the capability of widely-distributed receiver networks in promptly detecting and attributing the source of interference, aiding in the improvement of GNSS reliability.

elib-URL des Eintrags:https://elib.dlr.de/209745/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Detecting and Localizing Space Based Interference on GNSS Signals using Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Patil, AkshataStanford UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Phelts, R. EricStanford UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Walter, ToddStanford UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thoelert, SteffenIKNhttps://orcid.org/0000-0003-4653-318XNICHT SPEZIFIZIERT
Datum:Januar 2024
Erschienen in:Proceedings of the 2024 International Technical Meeting of The Institute of Navigation, ION ITM 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
ISSN:2330-3646
ISBN:978-0-936406-36-7
Status:veröffentlicht
Stichwörter:GNSS, Interference, Machine Learning, Detection and Localization of Interference
Veranstaltungstitel:ION ITM 2024
Veranstaltungsort:Long Beach, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Januar 2024
Veranstaltungsende:25 Januar 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - GNSS Technologien und Dienste
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Navigation
Hinterlegt von: Thölert, Steffen
Hinterlegt am:29 Nov 2024 10:40
Letzte Änderung:29 Nov 2024 10:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.