Schmidt, Agatha und Zunker, Henrik und Heinlein, Alexander und Kühn, Martin Joachim (2024) Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response. [sonstige Veröffentlichung]
PDF
1MB |
Offizielle URL: https://arxiv.org/abs/2411.06500
Kurzfassung
During the COVID-19 crisis, mechanistic models have been proven fundamental to guide evidence-based decision making. However, time-critical decisions in a dynamically changing environment restrict the time available for modelers to gather supporting evidence. As infectious disease dynamics are often heterogeneous on a spatial or demographic scale, models should be resolved accordingly. In addition, with a large number of potential interventions, all scenarios can barely be computed on time, even when using supercomputing facilities. We suggest to combine complex mechanistic models with data-driven surrogate models to allow for on-the-fly model adaptations by public health experts. We build upon a spatially and demographically resolved infectious disease model and train a graph neural network for data sets representing early phases of the pandemic. The resulting networks reached an execution time of less than a second, a significant speedup compared to the metapopulation approach. The suggested approach yields potential for on-the-fly execution and, thus, integration of disease dynamics models in low-barrier website applications. For the approach to be used with decision-making, datasets with larger variance will have to be considered.
elib-URL des Eintrags: | https://elib.dlr.de/209603/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | sonstige Veröffentlichung | ||||||||||||||||||||
Titel: | Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | Arxiv | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Machine learning, surrogate models, graph neural networks, infectious diseases, decision making, on-the-fly computing | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie Institut für Softwaretechnologie > High-Performance Computing | ||||||||||||||||||||
Hinterlegt von: | Kühn, Dr. Martin Joachim | ||||||||||||||||||||
Hinterlegt am: | 28 Nov 2024 09:50 | ||||||||||||||||||||
Letzte Änderung: | 28 Nov 2024 09:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags