elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hybrid epidemiological models for efficient insight on the individual scale: A contribution to green computing

Bicker, Julia und Schmieding, Rene und Meyer-Hermann, Michael und Kühn, Martin Joachim (2024) Hybrid epidemiological models for efficient insight on the individual scale: A contribution to green computing. European Conference on Mathematical and Theoretical Biology (ECMTB‘24), 2024-07-22 - 2024-07-26, Universidad de Castilla-La Mancha, Toledo, Spanien.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Mathematical modeling has been proven to be of great aid for many different domains by complementing classical physical experiments. A large variety of models has already helped to create a better understanding of physical, biological, or epidemiological processes. As infectious disease dynamics are highly driven by heterogeneous human contact patterns and human behavior, agent based models are most suitable to investigate underlying structures and to generate insights into individual-scale properties. However, the additionally gained knowledge has to be paid by a huge computational effort as the complexity grows linearly or quadratically with the number of considered agents inside a region or location. In our paper, we show how hybrid epidemiological models can reduce the computational effort by more than 90 % without losing the required depth in information on the individual scale. In order to keep the computational effort small, agent based models are often only developed for a region or time-frame of interest, e.g., neglecting information from coupled regions. By using well established metapopulation models for coupled regions or time-windows with less stochastic influence, agent-based model predictions can be improved and individual-scale information of the focus area can be retained without substantial increase in effort or energy consumption. Although nowadays, high-perfomance computing (HPC) techniques allow the simulation of increasingly large problems, HPC also produces increasingly large CO2 footprints. Hybrid epidemiological models can complement software and hardware optimizations to reduce energy consumption by only computing the necessary level of detail where needed, using dynamically developing summary statistics where possible. In this talk, we will briefly explain the temporal and spatial hybrid models and then present results of a spatial hybrid model for the city of Munich and its neighboring or connecting counties.

elib-URL des Eintrags:https://elib.dlr.de/209599/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Hybrid epidemiological models for efficient insight on the individual scale: A contribution to green computing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bicker, Juliajulia.bicker (at) dlr.dehttps://orcid.org/0000-0001-9382-4209NICHT SPEZIFIZIERT
Schmieding, ReneRene.Schmieding (at) dlr.dehttps://orcid.org/0000-0002-2769-0270NICHT SPEZIFIZIERT
Meyer-Hermann, MichaelDepartment of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Researchhttps://orcid.org/0000-0002-4300-2474NICHT SPEZIFIZIERT
Kühn, Martin JoachimMartin.Kuehn (at) dlr.dehttps://orcid.org/0000-0002-0906-6984NICHT SPEZIFIZIERT
Datum:24 Juli 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Agent-based Modeling, Metapopulation Model, Hybrid Modeling, Computational Efficiency, Energy reduction, Infectious Disease Dynamics
Veranstaltungstitel:European Conference on Mathematical and Theoretical Biology (ECMTB‘24)
Veranstaltungsort:Universidad de Castilla-La Mancha, Toledo, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:22 Juli 2024
Veranstaltungsende:26 Juli 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Institut für Softwaretechnologie > High-Performance Computing
Hinterlegt von: Kühn, Dr. Martin Joachim
Hinterlegt am:28 Nov 2024 09:50
Letzte Änderung:28 Nov 2024 09:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.