elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Study on the Uncertainty Propagation of Feature-Based Visual Navigation for Critical Flight Phases of Urban Air Mobility

Lee, Young-Hee und Zhu, Chen (2024) Study on the Uncertainty Propagation of Feature-Based Visual Navigation for Critical Flight Phases of Urban Air Mobility. ION GNSS+ 2024, 2024-09-16 - 2024-09-20, Baltimore, USA.

[img] PDF - Nur DLR-intern zugänglich
6MB

Offizielle URL: https://www.ion.org/publications/abstract.cfm?articleID=19835

Kurzfassung

As the demand for Autonomous Urban Air Mobility (UAM) has grown significantly, airborne navigation systems are facing more stringent requirements during critical flight phases such as vertical take-off and landing. However, it is difficult to simultaneously achieve high accuracy, integrity, and availability only using Global Navigation Satellite Systems (GNSS) in urban areas due to the presence of multipath and signal blocking effects caused by urban infrastructure. As a complementary solution, vehicle’s poses can be accurately estimated using feature-based visual navigation with a fiducial marker without the necessity of installing complex infrastructures. However, it is challenging to quantify the integrity performance of the feature-based positioning algorithm for aviation applications due to the inherent complexity of the system. One of the main challenges is to properly propagate the uncertainty from the measurement noise to the estimated positions. In our previous work, a six degrees of freedom Dilution Of Precision (DOP) for visual positioning was proposed to model the geometric impact of the estimation uncertainty, which uses the state-of-the-art Euclidean coordinates parameterization for the camera positions. However, it has been observed from flight campaigns that the Euclidean parameterization can only conservatively bound the uncertainty of the position estimates at very low altitudes. This paper presents a novel uncertainty propagation method based on parameterizing camera poses using the Lie group. The efficacy of this method is demonstrated through experimental results obtained in scenarios simulating the vertical operation of UAM. The results indicate that this method accurately reflects estimation uncertainty and outperforms existing state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/209498/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Study on the Uncertainty Propagation of Feature-Based Visual Navigation for Critical Flight Phases of Urban Air Mobility
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lee, Young-HeeYoung-Hee.Lee (at) dlr.dehttps://orcid.org/0009-0003-9851-4957NICHT SPEZIFIZIERT
Zhu, ChenChen.Zhu (at) dlr.dehttps://orcid.org/0000-0002-4320-4826NICHT SPEZIFIZIERT
Datum:September 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Visual Navigation, Integrity, Error Propagation, Vertiport, UAM, IAM
Veranstaltungstitel:ION GNSS+ 2024
Veranstaltungsort:Baltimore, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 September 2024
Veranstaltungsende:20 September 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Cybersicherheitszentrierte Kommunikation, Navigation und Überwachung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Navigation
Hinterlegt von: Lee, Young-Hee
Hinterlegt am:29 Nov 2024 10:38
Letzte Änderung:29 Nov 2024 10:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.