elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Improved GNSS receiver bias estimation using a neural-network based total electron content model

Hoque, Mohammed Mainul und Adolfs, Marjolijn und Salamanca, Luisas Riano (2024) Improved GNSS receiver bias estimation using a neural-network based total electron content model. EGU General Assembly 2024, 2024-04-14 - 2024-04-19, Vienna, Austria. doi: 10.5194/egusphere-egu24-12493.

[img] PDF - Nur DLR-intern zugänglich
854kB

Offizielle URL: https://meetingorganizer.copernicus.org/EGU24/EGU24-12493.html

Kurzfassung

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring large scale ionospheric irregularities and anomalies is possible. We recently developed a fully connected neural network model trained with Global Ionospheric Maps (GIMs) data from the last two solar cycles. The model can successfully reconstruct ionospheric features that are not always visible such as Nighttime Winter Anomaly (NWA) which is only visible in the Northern Hemisphere at the American sector and in the Southern Hemisphere at the Asian longitude sector during low solar activity, winter and local night-time conditions. The NN based TEC model inherits also other features such as the distribution of Mid-latitude Ionospheric Trough (MIT) and the longitudinal variation of the Equatorial Ionization Anomaly (EIA) features. Being motivated from the performance of the NN based TEC model in ionosphere reconstruction we applied the model for differential code bias (DCB) estimation for a network of ground GNSS receivers. The investigation shows that the receiver DCBs can be accurately computed by the NN-based TEC model. The obtained accuracies are comparable to those obtained by the conventional method of DCB estimation by fitting GNSS TEC data to the ionospheric basis function represented by spherical harmonics or other approaches. It is assumed that the application of NN based TEC model for GNSS receiver bias estimation will simplify the operational technique for near real-time ionosphere monitoring without losing its accuracy.

elib-URL des Eintrags:https://elib.dlr.de/209476/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Improved GNSS receiver bias estimation using a neural-network based total electron content model
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hoque, Mohammed MainulMainul.Hoque (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Adolfs, MarjolijnMarjolijn.Adolfs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Salamanca, Luisas Rianoluisa.rianosalamanca (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu24-12493
Status:veröffentlicht
Stichwörter:GNSS receiver bias estimation, neural-network based total electron content model, GNSS TEC
Veranstaltungstitel:EGU General Assembly 2024
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 April 2024
Veranstaltungsende:19 April 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Ionosphäre
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung
Hinterlegt von: Hoque, Mohammed Mainul
Hinterlegt am:04 Dez 2024 11:59
Letzte Änderung:04 Dez 2024 11:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.