elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A neural-network based ionosphere model for GNSS receiver bias estimation

Hoque, Mohammed Mainul und Adolfs, Marjolijn und Salamanca, Luisa F R (2024) A neural-network based ionosphere model for GNSS receiver bias estimation. 45th COSPAR Scientific Assembly 2024, 2024-07-13 - 2024-07-21, Busan, South Korea.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Applying machine learning (ML) techniques together with fast computing machines, more sophisticated ionosphere models featuring large scale ionospheric irregularities and anomalies can be developed nowadays [Adolfs et al. 2021]. We recently developed such a fully connected neural network (NN) based total electron content (TEC) model using Global Ionospheric Maps (GIMs) covering data from previous two solar cycles. We found that the NN based TEC model can successfully reconstruct ionospheric features that are not always visible such as the Nighttime Winter Anomaly (NWA). The NWA feature is only visible in the Northern Hemisphere at the American sector and in the Southern Hemisphere at the Asian longitude sector during low solar activity, winter and local night-time conditions. Our investigation shows that the same TEC model inherits also other features such as the Mid-latitude Ionospheric Trough (MIT) and the longitudinal variation of the Equatorial Ionization Anomaly (EIA) crests. Being motivated by its performance in ionosphere reconstruction we utilized the TEC model for differential code bias (DCB) estimation for a network of ground GNSS receivers. For this, we have derived an empirical version of the NN based TEC model which is portable and can be run independently without installing libraries that required during model training (e.g., TensorFlow). We found that the receiver DCBs can be computed by the NN-based TEC model with sufficient accuracy. The obtained accuracies are comparable to those obtained by the conventional method of DCB estimation by fitting GNSS TEC data to the ionospheric basis function represented by NTCM approach or spherical harmonics [Jakowski et al. 2011]. The application of NN based TEC model for GNSS receiver bias estimation will not only simplify the operational requirements but also improve near-real-time ionosphere monitoring service.

elib-URL des Eintrags:https://elib.dlr.de/209468/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A neural-network based ionosphere model for GNSS receiver bias estimation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hoque, Mohammed MainulMainul.Hoque (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Adolfs, MarjolijnMarjolijn.Adolfs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Salamanca, Luisa F RNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:GNSS receiver bias estimation, Neural Network ionosphere model
Veranstaltungstitel:45th COSPAR Scientific Assembly 2024
Veranstaltungsort:Busan, South Korea
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 Juli 2024
Veranstaltungsende:21 Juli 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Ionosphäre
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung
Hinterlegt von: Hoque, Mohammed Mainul
Hinterlegt am:04 Dez 2024 11:03
Letzte Änderung:04 Dez 2024 11:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.