elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards monitoring supraglacial lake dynamics in Antarctica with convolutional neural networks

Baumhoer, Celia und Köhler, Jonas und Lhermitte, Stef und Wouters, Bert und Dietz, Andreas (2024) Towards monitoring supraglacial lake dynamics in Antarctica with convolutional neural networks. EGU General Assembly 2024, 2024-04-14 - 2024-04-19, Wien, Österreich. doi: 10.5194/egusphere-egu24-14894.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Monitoring the dynamics of Antarctic supraglacial lakes is of particular interest in the context of global warming. Supraglacial meltwater accumulation on ice sheets and ice shelves can be a major driver of accelerated ice discharge. This is caused through processes such as surface runoff leading to ice thinning, basal meltwater injection causing basal sliding, and hydrofracture triggering ice shelf collapse and subsequent glacier acceleration. In addition, an increased presence of supraglacial lakes around the Antarctic margin can trigger enhanced melting due to the low albedo of surface lakes, which leads to increased absorption of solar radiation. Hence, continuous monitoring of supraglacial lakes is crucial for improving our understanding on their seasonal variations in extent and their impacts on ice shelf stability and ice sheet surface mass balance. Initially, an automated supraglacial lake mapping approach was developed to create bi-weekly lake extent maps for six Antarctic ice shelves based on fused results from convolutional neural network predictions and a Random Forest (RF) classification trained on Sentinel-1/-2 data. But regular large-scale monitoring beyond these six selected areas requires a model with higher spatio-temporal transferability and an efficient fully automated data processing workflow. We tested for a potential improvement by replacing the RF-based mapping with an attention-based U-Net, expanding the training and test sites on a total of 23 regions and switching the processing to a more powerful high-performance computing infrastructure. We will discuss how remote sensing-based mapping accuracies can be improved by extending the training/test dataset, selecting the right machine learning model and the choice of processing infrastructure. In the future, the automated processing workflow will provide a regularly updated dataset on supraglacial lake dynamics of 23 Antarctic ice shelves via a web service by exploiting the full archive of available Sentinel-1/-2 satellite imagery.

elib-URL des Eintrags:https://elib.dlr.de/209406/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Towards monitoring supraglacial lake dynamics in Antarctica with convolutional neural networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumhoer, CeliaCelia.Baumhoer (at) dlr.dehttps://orcid.org/0000-0003-1339-2288NICHT SPEZIFIZIERT
Köhler, JonasJonas.Koehler (at) dlr.dehttps://orcid.org/0000-0001-6086-2364NICHT SPEZIFIZIERT
Lhermitte, StefDepartment of Geoscience Remote Sensing, Delft University of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wouters, BertDepartment of Physics, Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlandshttps://orcid.org/0000-0002-1086-2435NICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu24-14894
Status:veröffentlicht
Stichwörter:supraglacial lakes, deep learning, Sentinel-1, Sentinel-2
Veranstaltungstitel:EGU General Assembly 2024
Veranstaltungsort:Wien, Österreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 April 2024
Veranstaltungsende:19 April 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geoprodukte und -Systeme, Services, R - Fernerkundung u. Geoforschung, R - Maschinelles Lernen, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Baumhoer, Dr. Celia
Hinterlegt am:26 Nov 2024 11:48
Letzte Änderung:26 Nov 2024 11:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.