elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Calving front positions for 42 key glaciers of the Antarctic Peninsula: a sub-seasonal record from 2013 to 2023 based on a deep learning application to Landsat multispectral imagery

Loebel, Erik und Baumhoer, Celia und Dietz, Andreas und Scheinert, Mirko und Horwath, Martin (2024) Calving front positions for 42 key glaciers of the Antarctic Peninsula: a sub-seasonal record from 2013 to 2023 based on a deep learning application to Landsat multispectral imagery. Earth System Science Data, Seiten 1-14. Copernicus Publications. doi: 10.5194/essd-2023-535. ISSN 1866-3508. (im Druck)

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Calving front positions of marine-terminating glaciers are an essential parameter for understanding dynamic glacier changes and constraining ice modelling. In particular, for the Antarctic Peninsula, where the current ice mass loss is driven by dynamic glacier changes, accurate and comprehensive data products are of major importance. Current calving front data products are limited in coverage and temporal resolution because they rely on manual delineation, which is time-consuming and unfeasible for the increasing amount of satellite data. To simplify the mapping of calving fronts we apply a deep learning based processing system designed to automatically delineate glacier fronts from multispectral Landsat imagery. The U-Net based framework was initially trained on 869 Greenland glacier front positions and is here extended by 252 front positions of the Antarctic Peninsula. The data product presented here includes 4817 calving front locations of 42 key outlet glaciers from 2013 to 2023 and achieves sub-seasonal temporal resolution. The mean difference between automated and manual extraction is estimated at 59.3 ± 5.9 m. This data set will help to better understand marine-terminating glacier dynamics on an intra-annual scale, study ice-ocean interactions in more detail and constrain glacier models. The data is publicly available at PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.963725 (Loebel et al., 2023)

elib-URL des Eintrags:https://elib.dlr.de/209400/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:This work was supported by the Helmholtz Association of German Research Centers as part of the Helmholtz Information and Data Science Incubator, project ”Artificial Intelligence for Cold Regions” (AI-CORE, grant no. ZT-I-0016), and by the German Federal Ministry of Education and Research (BMBF), project "Greenland Ice Sheet/Ocean Interaction" (GROCE2, grant no. 03F0778G).
Titel:Calving front positions for 42 key glaciers of the Antarctic Peninsula: a sub-seasonal record from 2013 to 2023 based on a deep learning application to Landsat multispectral imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Loebel, ErikTU DresdenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Baumhoer, CeliaCelia.Baumhoer (at) dlr.dehttps://orcid.org/0000-0003-1339-2288NICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Scheinert, MirkoTU DresdenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Horwath, MartinMartin.Horwath (at) tu-dresden.dehttps://orcid.org/0000-0001-5797-244XNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:Earth System Science Data
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.5194/essd-2023-535
Seitenbereich:Seiten 1-14
Verlag:Copernicus Publications
ISSN:1866-3508
Status:im Druck
Stichwörter:calöving front, Antarctica, Antarctic Peninsula, glacier, deep learning, U-Net, machine learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Maschinelles Lernen, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Baumhoer, Dr. Celia
Hinterlegt am:26 Nov 2024 11:24
Letzte Änderung:26 Nov 2024 11:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.