Joshi, Gunjan und Baumhoer, Celia und Dietz, Andreas und Natusaki, Ryo und Hirose, Akira (2024) Estimating Snow Line Altitude using Optical and SAR Data Fusion: Explainable Neural Network-Based Approach — Case Study of the Great Aletsch Glacier. In: 15th European Conference on Synthetic Aperture Radar, EUSAR 2024, Seiten 399-404. EUSAR2024 April 23-26 2024, 2024-04-23 - 2024-04-26, Munich, Germany. ISBN 978-380076287-3. ISSN 2197-4403.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Accurate glacier surface classification is crucial for understanding glacier health. In this study, we combine Sentinel-2 optical and Sentinel-1 synthetic aperture radar (SAR) data, using an explainable neural network to determine the Snow Line Altitude (SLA). This study focuses on the Aletsch Glacier in the European Alps, which, apart from facing climaterelated retreat issues, is also affected by the presence of dust deposited during Sahara dust events. The proposed approach distinguishes pure snow from ice, aids in SLA monitoring, and also assesses the annual presence of Sahara dust on the glacier. In this paper, we observe the glacier for 2015, 2021 and 2023 and observe retreat of the SLA. The fusion of optical and SAR data mitigates the limitations of single-source data, providing a comprehensive understanding of glacier dynamics in the context of climate change.
elib-URL des Eintrags: | https://elib.dlr.de/209324/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
Zusätzliche Informationen: | Remote Sensing Technology Center of Japan under Grant 2023 RESTEC 0261 and in part by the JSPS KAKENHI under Grant 18H04105 and 23H00487 | ||||||||||||||||||||||||
Titel: | Estimating Snow Line Altitude using Optical and SAR Data Fusion: Explainable Neural Network-Based Approach — Case Study of the Great Aletsch Glacier | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | April 2024 | ||||||||||||||||||||||||
Erschienen in: | 15th European Conference on Synthetic Aperture Radar, EUSAR 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 399-404 | ||||||||||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||||||||||
ISBN: | 978-380076287-3 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | explainable AI, Aletsch Glacier, snow line elevation, neural network, deep learning | ||||||||||||||||||||||||
Veranstaltungstitel: | EUSAR2024 April 23-26 2024 | ||||||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 April 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 26 April 2024 | ||||||||||||||||||||||||
Veranstalter : | EUSAR | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Grundlagenforschung im Bereich Maschinelles Lernen, R - Maschinelles Lernen | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||||||||||
Hinterlegt von: | Baumhoer, Dr. Celia | ||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2024 11:32 | ||||||||||||||||||||||||
Letzte Änderung: | 26 Nov 2024 11:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags