elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Physics-Guided Convolutional Neural Network for Flow Prediction in Heat Exchangers in Electrified Aircraft

Bokil, Gaurav und Geyer, Thomas und Merbold, Sebastian und Kazula, Stefan (2024) Physics-Guided Convolutional Neural Network for Flow Prediction in Heat Exchangers in Electrified Aircraft. In: AIAA Aviation Forum and ASCEND, 2024. AIAA. AIAA AVIATION FORUM AND ASCEND 2024, 2024-07-29 - 2024-08-02, Las Vegas, USA. doi: 10.2514/6.2024-4108. ISBN 978-162410716-0.

[img] PDF - Nur DLR-intern zugänglich
5MB

Kurzfassung

Electric aircraft propulsion systems powered by fuel cells are sensitive to operating temperature. With a roughly 50% efficiency of fuel cells, the requirement of heat rejection is a major challenge in the Thermal Management System (TMS). One of the most essential components of the TMS is the heat exchanger (HEX). To simulate the convective heat transfer inside the HEX, high-fidelity Computational Fluid Dynamics (CFD) simulations are commonly carried out. However, performing such simulations for sensitivity analysis and geometry optimization is computationally expensive. To overcome this, a deep-learning-based approach for surrogate modeling is pursued. A geometry-adaptive Convolutional Neural Network (CNN) surrogate model was constructed in the current study to predict the RANS mean flow fields of 2D HEX tube bundles with arbitrary cross-sections. Two CNN models were trained on the RANS simulations of 180 geometry samples to predict the velocity, pressure and temperature distribution. Primarily, a physics-informed CNN model was trained on a combination of the data-driven loss and the RANS governing equations. The spatial gradients of flow variables in this loss function were computed using a sixth-order central difference scheme on the uniform grid. Notably, the Dirichlet boundary conditions were strongly encoded in the CNN architecture and were thus inherently satisfied in the predictions. Additionally, a purely data-driven model was trained to compare the performance with the physics-informed approach. Both the CNN surrogate models were compared on qualitative and quantitative grounds. Overall, the RANS-guided model outperformed the simple data-driven model, thus reinforcing the advantages of this approach. On the unseen test geometries, the RANS-guided model predicted the distinct flow features in velocity, pressure and temperature with 97% accuracy and satisfied the governing equations as well as the boundary conditions. This approach not only alleviates overfitting and the need for large training datasets but also provides reliability. The RANS-guided surrogate model was developed to serve as a useful tool in the design exploration and optimization of HEX geometry in electrified propulsion systems.

elib-URL des Eintrags:https://elib.dlr.de/209285/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Physics-Guided Convolutional Neural Network for Flow Prediction in Heat Exchangers in Electrified Aircraft
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bokil, Gauravgaurav.bokil (at) dlr.dehttps://orcid.org/0000-0002-5730-6284173389833
Geyer, Thomasthomas.geyer (at) dlr.dehttps://orcid.org/0000-0003-2380-1188173389835
Merbold, Sebastiansebastian.merbold (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kazula, Stefanstefan.kazula (at) dlr.dehttps://orcid.org/0000-0002-9050-1292173389836
Datum:27 Juli 2024
Erschienen in:AIAA Aviation Forum and ASCEND, 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2024-4108
Verlag:AIAA
Name der Reihe:AVIATION
ISBN:978-162410716-0
Status:veröffentlicht
Stichwörter:Covnolutional neural networks, computational fluid dynamics, heat exchanger, deep learning, physics-informed
Veranstaltungstitel:AIAA AVIATION FORUM AND ASCEND 2024
Veranstaltungsort:Las Vegas, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 Juli 2024
Veranstaltungsende:2 August 2024
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung
Standort: Cottbus
Institute & Einrichtungen:Institut für Elektrifizierte Luftfahrtantriebe
Hinterlegt von: Bokil, Gaurav
Hinterlegt am:09 Dez 2024 13:04
Letzte Änderung:09 Dez 2024 13:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.