Mittelstädt, Justin und Maier, Julia und Goerke, Panja und Zinn, Frank und Hermes, Michael (2024) Large language models can outperform humans in social situational judgments. Scientific Reports, 14, Seite 27449. Nature Publishing Group. doi: 10.1038/s41598-024-79048-0. ISSN 2045-2322.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.nature.com/articles/s41598-024-79048-0
Kurzfassung
Large language models (LLM) have been a catalyst for the public interest in artificial intelligence (AI). These technologies perform some knowledge-based tasks better and faster than human beings. However, whether AIs can correctly assess social situations and devise socially appropriate behavior, is still unclear. We conducted an established Situational Judgment Test (SJT) with five different chatbots and compared their results with responses of human participants (N = 276). Claude, Copilot and you.com’s smart assistant performed significantly better than humans in proposing suitable behaviors in social situations. Moreover, their effectiveness rating of different behavior options aligned well with expert ratings. These results indicate that LLMs are capable of producing adept social judgments. While this constitutes an important requirement for the use as virtual social assistants, challenges and risks are still associated with their wide-spread use in social contexts.
elib-URL des Eintrags: | https://elib.dlr.de/209240/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Large language models can outperform humans in social situational judgments | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 10 November 2024 | ||||||||||||||||||||||||
Erschienen in: | Scientific Reports | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||
DOI: | 10.1038/s41598-024-79048-0 | ||||||||||||||||||||||||
Seitenbereich: | Seite 27449 | ||||||||||||||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||||||||||||||
ISSN: | 2045-2322 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | artificial intelligence, social judgment, human-computer interaction | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Hamburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Luft- und Raumfahrtmedizin > Luft- und Raumfahrtpsychologie | ||||||||||||||||||||||||
Hinterlegt von: | Mittelstädt, Dr. Justin | ||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2024 07:48 | ||||||||||||||||||||||||
Letzte Änderung: | 28 Nov 2024 12:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags