Hänsch, Ronny (2024) The power of voting: Ensemble learning in remote sensing. In: Advances in Machine Learning and Image Analysis for GeoAI Elsevier. Seiten 201-235. ISBN 9780443190780.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/pii/B9780443190773000158
Kurzfassung
Ensemble Learning, the concept of generating, training, and employing multiple machine learning models for inference rather than just one, is of increasing interest. It offers an interesting anthropomorphism by drawing similarities to human committees and the wisdom of crowds. Additionally to such a rather intuitive understanding, it has a sound theoretic foundation and an overwhelming amount of empirical evidence that it outperforms single estimators for a large variety of tasks including regression and classification. While ensembles come with an increased computational load and decreased interpretability, they lead to more accurate and robust predictions, are less prone to overfitting and adversarial attacks, and provide reliable uncertainty estimates of their predictions. This chapter discusses Ensemble Learning from various aspects, presents theoretical considerations and empirical heuristics and provides examples where it was successfully applied to analyze remote sensing and Earth observation data.
elib-URL des Eintrags: | https://elib.dlr.de/209224/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||
Titel: | The power of voting: Ensemble learning in remote sensing | ||||||||
Autoren: |
| ||||||||
Datum: | 2024 | ||||||||
Erschienen in: | Advances in Machine Learning and Image Analysis for GeoAI | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Seitenbereich: | Seiten 201-235 | ||||||||
Verlag: | Elsevier | ||||||||
ISBN: | 9780443190780 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Ensemble learning, Random forests, Mixture of experts, Diversity, Pruning | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||
Hinterlegt von: | Hänsch, Ronny | ||||||||
Hinterlegt am: | 25 Nov 2024 14:08 | ||||||||
Letzte Änderung: | 25 Nov 2024 14:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags