elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

In-flight enhancement of the online optical frequency accuracy of an Integral-Path Differential Absorption lidar thanks to a rugged, airborne self-referenced frequency comb

Quatrevalet, Mathieu und Wolferstetter, Martin und Sprenger, Martin und Fischer, Marc und Holzwarth, Ronald und Fix, Andreas (2024) In-flight enhancement of the online optical frequency accuracy of an Integral-Path Differential Absorption lidar thanks to a rugged, airborne self-referenced frequency comb. Optics Express. Optical Society of America. ISSN 1094-4087. (eingereichter Beitrag)

[img] PDF - Nur DLR-intern zugänglich - Preprintversion (eingereichte Entwurfsversion)
2MB

Kurzfassung

Airborne and spaceborne Integral-Path Differential Absorption (IPDA) lidar has the potential to deliver column measurements of the major greenhouse gases influenced by human activity with the high accuracy that is required to significantly reduce the uncertainties in our estimations of surface fluxes of methane and carbon dioxide by inverse modelling. A prerequisite is the highly accurate knowledge of the emitted wavelengths, especially for carbon dioxide in the 1.6-µm region, where a long-term optical frequency knowledge accuracy of the online channel down to a few tens of kHz is required. DLR’s airborne IPDA lidar for simultaneous measurements of carbon dioxide at 1.57 µm and methane at 1.64 µm, CHARMF, uses a specifically developed frequency reference unit based on optimized wavelength modulation spectroscopy which can reach the required accuracy in a stabilized laboratory environment, but whose in-flight performance in the more challenging aircraft environment could not be independently validated. In the frame of the Carbon Dioxide and Methane Mission (CoMet) field campaigns in 2018 and 2022, CoMet 1.0 and CoMet 2.0 Arctic, respectively, a cooperation with Menlo Systems GmbH made it possible to bring a prototype of a new generation of portable and rugged Self-Referenced Frequency Combs (SRFC) on board the German research aircraft HALO. This airborne frequency comb served as an independent frequency reference to characterize the performance of CHARM-F’s frequency reference system in flight. We report here on the measurements carried out during the CoMet 2.0 Arctic campaign and demonstrate the potential of such portable SRFCs as next-generation frequency references for atmospheric lidars.

elib-URL des Eintrags:https://elib.dlr.de/209034/
Dokumentart:Zeitschriftenbeitrag
Titel:In-flight enhancement of the online optical frequency accuracy of an Integral-Path Differential Absorption lidar thanks to a rugged, airborne self-referenced frequency comb
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Quatrevalet, MathieuDLR, IPAhttps://orcid.org/0009-0002-0300-0076NICHT SPEZIFIZIERT
Wolferstetter, MartinMenlo Systems GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sprenger, MartinMenlo Systems GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fischer, MarcMenlo Systems GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Holzwarth, RonaldMenlo Systems GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fix, AndreasDLR, IPAhttps://orcid.org/0000-0003-2818-9290NICHT SPEZIFIZIERT
Datum:2024
Erschienen in:Optics Express
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:Optical Society of America
ISSN:1094-4087
Status:eingereichter Beitrag
Stichwörter:Lidar, Differential Absorption Lidar, Integral-Path Differential Absorption, DIAL, IPDA, Airborne remote sensing, Frequency Comb, Self-Referenced Frequency Comb, Portable, Rugged, Carbon Dioxide, Optical Frequency Stabilization, Optical Frequency accuracy, Optical Frequency Reference, FOKAL, CHARM-F, HALO, Comet 2.0 Arctic
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt MABAK
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Lidar
Hinterlegt von: Quatrevalet, Mathieu
Hinterlegt am:25 Nov 2024 13:27
Letzte Änderung:25 Nov 2024 13:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.