Kuhl, Mathias und Pargmann, Max und Cherti, Mehdi und Jitsev, Jenia und Maldonado Quinto, Daniel (2024) Flux Density Distribution Forecasting in Concentrated Solar Tower Plants: A Data-Driven Approach. Solar Energy (282), Seiten 112894-1. Elsevier. doi: 10.1016/j.solener.2024.112894. ISSN 0038-092X.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
983kB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0038092X24005899?via%3Dihub
Kurzfassung
Concentrated Solar Power (CSP) systems, particularly those employing heliostat fields combined with a central tower, demonstrate substantial capacity for producing dispatchable, sustainable energy and fuel. This is achieved by focusing the sunlight with up to thousands of individual heliostats onto a single receiver. Forecasting the focal spot of each heliostat at any solar position becomes imperative to ensure optimal control. Nevertheless, the existing cutting-edge techniques aimed at predicting this flux density distribution either suffer from inaccuracies or entail substantial costs. In response to these challenges, our study introduces a novel approach involving a generative model that learns the shape and intensity patterns of the focal spots directly from images captured of the calibration target. We developed a purely data-driven methodology to generate the focal spots of the heliostats corresponding to various sun positions. The model is based on the StyleGAN architecture with adapted learnable input vectors for each individual heliostat and sun positions as input condition. The methodology’s effectiveness is demonstrated through training and evaluation on data collected from a research power plant, where it achieved a flux prediction accuracy of 89% on the calibration target surface. Our work offers a novel solution for predicting flux density distributions in solar power plants in a fully data-driven way with a neural network. This method achieves cost efficiency by utilizing data obtained during standard operational procedures. Impressively, this method attains accuracy levels comparable to or exceeding those of current state-of-the-art techniques.
elib-URL des Eintrags: | https://elib.dlr.de/208932/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Flux Density Distribution Forecasting in Concentrated Solar Tower Plants: A Data-Driven Approach | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 1 November 2024 | ||||||||||||||||||||||||
Erschienen in: | Solar Energy | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1016/j.solener.2024.112894 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 112894-1 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
Name der Reihe: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0038-092X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Solar power tower Flux density prediction Camera-target method Heliostat Machine learning | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Intelligenter Betrieb | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Solare Kraftwerktechnik | ||||||||||||||||||||||||
Hinterlegt von: | Brockel, Linda | ||||||||||||||||||||||||
Hinterlegt am: | 22 Nov 2024 10:24 | ||||||||||||||||||||||||
Letzte Änderung: | 17 Feb 2025 09:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags