El Baff, Roxanne und Al-Khatib, Khalid und Alshomary, Milad und Konen, Kai und Stein, Benno und Wachsmuth, Henning (2024) Improving Argument Effectiveness Across Ideologies using Instruction-tuned Large Language Models. Association for Computational Linguistic. The 2024 Conference on Empirical Methods in Natural Language Processing, 2024-11-12 - 2024-11-16, Miami, Florida, USA.
PDF
1MB |
Offizielle URL: https://aclanthology.org/2024.findings-emnlp.265/
Kurzfassung
Different political ideologies (e.g., liberal and conservative Americans) hold different worldviews, which leads to opposing stances on different issues (e.g., gun control) and, thereby, fostering societal polarization. Arguments are a means of bringing the perspectives of people with different ideologies closer together, depending on how well they reach their audience. In this paper, we study how to computationally turn ineffective arguments into effective arguments for people with certain ideologies by using instruction-tuned large language models (LLMs), looking closely at style features. For development and evaluation, we collect ineffective arguments per ideology from debate.org, and we generate about 30k, which we rewrite using three LLM methods tailored to our task: zero-shot prompting, few-shot prompting, and LLM steering. Our experiments provide evidence that LLMs naturally improve argument effectiveness for liberals. Our LLM-based and human evaluation show a clear preference towards the rewritten arguments. Code and link to the data are available here: https://github.com/roxanneelbaff/emnlp2024-iesta.
elib-URL des Eintrags: | https://elib.dlr.de/208890/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Improving Argument Effectiveness Across Ideologies using Instruction-tuned Large Language Models | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | November 2024 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 4604-4622 | ||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||
Verlag: | Association for Computational Linguistic | ||||||||||||||||||||||||||||
Name der Reihe: | Findings of the Association for Computational Linguistics: EMNLP 2024 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | computational argumentation, LLM for style transfer, LLM as evaluator, role-playing | ||||||||||||||||||||||||||||
Veranstaltungstitel: | The 2024 Conference on Empirical Methods in Natural Language Processing | ||||||||||||||||||||||||||||
Veranstaltungsort: | Miami, Florida, USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 November 2024 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 16 November 2024 | ||||||||||||||||||||||||||||
Veranstalter : | https://2024.emnlp.org/organization/ | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | D - keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - keine Zuordnung | ||||||||||||||||||||||||||||
Standort: | Köln-Porz , Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie Institut für Softwaretechnologie > Intelligente und verteilte Systeme | ||||||||||||||||||||||||||||
Hinterlegt von: | El Baff, Roxanne | ||||||||||||||||||||||||||||
Hinterlegt am: | 28 Nov 2024 09:05 | ||||||||||||||||||||||||||||
Letzte Änderung: | 28 Nov 2024 09:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags