elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Remote sensing-based tree species classification for estimating ecosystem services

Garcia de León, Andrea Sofia und Leichtle, Tobias und Rötzer, Thomas und Martin, Klaus und Ullmann, Tobias und Taubenböck, Hannes (2024) Remote sensing-based tree species classification for estimating ecosystem services. IUFRO World Congress 2024, 2024-06-23 - 2024-06-29, Stockholm, Sweden.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Urban trees play a vital role in enhancing community health and well-being by providing environmental, social, and economic functions, collectively known as ecosystem services. Urban tree growth models have attempted to estimate the extent of these ecosystem services using allometric equations, growth factors and physiological functions. Nevertheless, these models require detailed information on individual tree characteristics, particularly tree species. Traditional data collection methods for tree attributes can be expensive and time-consuming. This study proposes a cost-effective approach utilizing remote sensing products, specifically multi-temporal satellite imagery and a canopy height model with very high spatial resolution, in conjunction with machine learning techniques for single tree classification. Our object-based classification method incorporates various features, including vegetation indices, spectral, geometrical, and phenological attributes to differentiate the most common tree genera in Munich, Germany. To enhance classification accuracy, we adopt a hierarchical approach that considers land use, physiological characteristics, genus, and species. The model was applied over a large-scale area, successfully classifying more than 160,000 trees. Evaluation of the results revealed variations in classification accuracy based on land use and tree genus, achieving an accuracy of up to 88.9% for certain species. Our results are further validated for the estimation of ecosystem services by testing our tree metrics in the CityTree model. This research demonstrates the efficacy of remote sensing and machine learning techniques for accurately classifying urban trees and obtaining detailed tree attributes necessary for ecosystem services models. The findings contribute to a more detailed understanding of urban tree dynamics and provide valuable insights for monitoring urban trees and their ecosystem services.

elib-URL des Eintrags:https://elib.dlr.de/208635/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Remote sensing-based tree species classification for estimating ecosystem services
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Garcia de León, Andrea Sofiaandrea-sofia.garcia-de-leon (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Leichtle, Tobiastobias.leichtle (at) dlr.dehttps://orcid.org/0000-0002-0852-4437NICHT SPEZIFIZIERT
Rötzer, ThomasTechnical University of MunichNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Martin, Klausklaus.martin (at) slu-web.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ullmann, TobiasJulius-Maximilians-University of Würzburg, Würzburg, Germanyhttps://orcid.org/0000-0002-6626-3052NICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:28 Juni 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:urban trees, remote sensing, species classification, ecosystem services
Veranstaltungstitel:IUFRO World Congress 2024
Veranstaltungsort:Stockholm, Sweden
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Juni 2024
Veranstaltungsende:29 Juni 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Leichtle, Tobias
Hinterlegt am:19 Nov 2024 13:08
Letzte Änderung:19 Nov 2024 13:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.