elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data-Driven Wildfire Spread Modelling Of European Wildfires

Rösch, Moritz und Nolde, Michael und Riedlinger, Torsten (2024) Data-Driven Wildfire Spread Modelling Of European Wildfires. 13th EARSeL Workshop on Forest Fires 2024, 2024-09-19 - 2024-09-20, Mailand, Italien.

[img] PDF
475kB

Kurzfassung

Human-induced climate change is causing wildfires to intensify and become more frequent across the globe, as evidenced by recent extreme events in Greece (2023), Canada (2023), and Chile (2024). To effectively manage these risks, wildfire spread models play a crucial role in planning timely suppression efforts. Historically, wildfire spread models have been developed using semi-empirical approximations based on experimental burnings. Although used in an operational context, such models suffer from inaccuracies and transferability issues outside of their development region. Recent advances in the availability of remote sensing data, artificial intelligence, and computational resources allow for a new data-driven perspective on wildfire spread modelling that offers the opportunity to overcome the limitations of established semi-empirical models. We developed a novel data-driven wildfire spread modelling approach using a Spatio-Temporal Graph Neural Network (STGNN) trained on the historic burned area time series of European wildfires retrieved from Copernicus Sentinel-3 imagery. A training dataset was built by populating individual burned area perimeters with dynamic (e.g. meteorological data, Fire Weather Index (FWI), hotspots) and static (e.g. fuel map, land cover, topography) auxiliary datasets in a discrete, hexagonal grid system (H3), which allows to include neighbourhood relationships into the dataset. Each wildfire time series was then transformed into a spatio-temporal graph representation which formed the input for the model. The STGNN can simultaneously process and learn the spatial and temporal dependencies in the data by combining a Graph Convolutional Network (GCN) with a Gated Recurrent Unit (GRU). The model was iteratively trained on each time step of individual wildfire time series and can predict the next day’s burned area. Testing was done by feeding the first day of an unseen wildfire time series and predicting the wildfire’s burned area on the four following days. Validation was achieved by calculating the weighted macro-mean Jaccard Index (IoU) between the predicted daily burned area and the Sentinel-3 reference burned area. A first model was developed on Portuguese wildfires to test the ability of the STGNN to capture the spatial and temporal evolution of wildfires. To assess the generalization ability of the wildfire spread model, the STGNN was then trained and tested with Mediterranean wildfire time series from different countries with varying environmental conditions.

elib-URL des Eintrags:https://elib.dlr.de/208631/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Data-Driven Wildfire Spread Modelling Of European Wildfires
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rösch, Moritzmoritz.roesch (at) dlr.dehttps://orcid.org/0009-0003-2928-7009NICHT SPEZIFIZIERT
Nolde, MichaelMichael.Nolde (at) dlr.dehttps://orcid.org/0000-0002-6981-9730NICHT SPEZIFIZIERT
Riedlinger, TorstenTorsten.Riedlinger (at) dlr.dehttps://orcid.org/0000-0003-3836-614XNICHT SPEZIFIZIERT
Datum:20 September 2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Wildfire Spread Modelling, Deep Learning, Remote Sensing Time Series, Graph-based Modelling, Mediterranean
Veranstaltungstitel:13th EARSeL Workshop on Forest Fires 2024
Veranstaltungsort:Mailand, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 September 2024
Veranstaltungsende:20 September 2024
Veranstalter :uropean Association of Remote Sensing Laboratories (EARSeL)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Rösch, Moritz
Hinterlegt am:19 Nov 2024 13:08
Letzte Änderung:19 Nov 2024 13:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.