Retagne, Wiebke und Dauer, Jonas und Waxenegger-Wilfing, Günther (2024) Adaptive satellite attitude control for varying masses using deep reinforcement learning. Frontiers in Robotics and AI (11). Frontiers Media S.A. doi: 10.3389/frobt.2024.1402846. ISSN 2296-9144.
PDF
- Verlagsversion (veröffentlichte Fassung)
23MB |
Offizielle URL: https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2024.1402846/full
Kurzfassung
Traditional spacecraft attitude control often relies heavily on the dimension and mass information of the spacecraft. In active debris removal scenarios, these characteristics cannot be known beforehand because the debris can take any shape or mass. Additionally, it is not possible to measure the mass of the combined system of satellite and debris object in orbit. Therefore, it is crucial to develop an adaptive satellite attitude control that can extract mass information about the satellite system from other measurements. The authors propose using deep reinforcement learning (DRL) algorithms, employing stacked observations to handle widely varying masses. The satellite is simulated in Basilisk software, and the control performance is assessed using Monte Carlo simulations. The results demonstrate the benefits of DRL with stacked observations compared to a classical proportional integral derivative (PID) controller for the spacecraft attitude control. The algorithm is able to adapt, especially in scenarios with changing physical properties.
elib-URL des Eintrags: | https://elib.dlr.de/208122/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Adaptive satellite attitude control for varying masses using deep reinforcement learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 24 Juli 2024 | ||||||||||||||||
Erschienen in: | Frontiers in Robotics and AI | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.3389/frobt.2024.1402846 | ||||||||||||||||
Verlag: | Frontiers Media S.A | ||||||||||||||||
Name der Reihe: | Space Robotics | ||||||||||||||||
ISSN: | 2296-9144 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | attitude control, deep reinforcement learning, adaptive control, spacecraft dynamics, varying masses, space debris, active debris removal | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - PISA | ||||||||||||||||
Standort: | Lampoldshausen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtantriebe > Raketenantriebssysteme | ||||||||||||||||
Hinterlegt von: | Dauer, Jonas | ||||||||||||||||
Hinterlegt am: | 07 Nov 2024 10:36 | ||||||||||||||||
Letzte Änderung: | 18 Nov 2024 13:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags