Lenhard, Tamara und Weinmann, Andreas und Jäger, Stefan und Brucherseifer, Eva (2024) Deploying a Feedback Loop-Based Training Strategy for Deep Learning-Based Drone Detection. In: AIP Conference Proceedings, 3182 (060004). 49th International Conference “Applications of Mathematics in Engineering and Economics” (AMEE23), 2023-06-10 - 2023-06-16, Sozopol, Bulgaria. doi: 10.1063/5.0245955.
![]() |
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Detecting drones in real-world scenarios with high reliability (e.g., for protecting critical infrastructures) is an essential yet challenging computer vision task due to the intricate and continuously evolving nature of drone technology. In this paper, we consider a feedback loop-based training strategy to address the need for robust drone detection systems. Leveraging game engine-based simulations within three-dimensional environments, our approach facilitates the application-oriented refinement of synthetic training data in an iterative manner, effectively narrowing the simulation-reality gap. By incorporating a small amount of real-world data into the training process, our strategy demonstrates its efficacy across multiple real-world datasets, surpassing the performance of models derived via zero-shot sim-to-real transfer learning. Our findings highlight the practical relevance of this approach, especially in surveillance settings, and emphasize its potential to enhance deep learning models for drone detection.
elib-URL des Eintrags: | https://elib.dlr.de/207908/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Deploying a Feedback Loop-Based Training Strategy for Deep Learning-Based Drone Detection | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | AIP Conference Proceedings | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 3182 | ||||||||||||||||||||
DOI: | 10.1063/5.0245955 | ||||||||||||||||||||
Name der Reihe: | Proceedings of the 49th International Conference "Applications of Mathematics in Engineering and Economics" | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | drone detection, synthetic data, deep learning, feedback loop-based training strategy | ||||||||||||||||||||
Veranstaltungstitel: | 49th International Conference “Applications of Mathematics in Engineering and Economics” (AMEE23) | ||||||||||||||||||||
Veranstaltungsort: | Sozopol, Bulgaria | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 10 Juni 2023 | ||||||||||||||||||||
Veranstaltungsende: | 16 Juni 2023 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Automated Model Generation | ||||||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen | ||||||||||||||||||||
Hinterlegt von: | Lenhard, Tamara | ||||||||||||||||||||
Hinterlegt am: | 11 Apr 2025 08:39 | ||||||||||||||||||||
Letzte Änderung: | 11 Apr 2025 08:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags