Lenhard, Tamara und Weinmann, Andreas und Franke, Kai und Koch, Tobias (2024) SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025-02-28 - 2025-03-04, Tucson, Arisona, USA.
PDF
- Nur DLR-intern zugänglich
1MB | |
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Developing robust drone detection systems is often constrained by the limited availability of large-scale annotated training data and the high costs associated with real-world data collection. However, leveraging synthetic data generated via game engine-based simulations provides a promising and cost-effective solution to overcome this issue. Therefore, we present SynDroneVision, a synthetic dataset specifically designed for RGB-based drone detection in surveillance applications. Featuring diverse backgrounds, lighting conditions, and drone models, SynDroneVision offers a comprehensive training foundation for deep learning algorithms. To evaluate the dataset's effectiveness, we perform a comparative analysis across a selection of recent YOLO detection models. Our findings demonstrate that SynDroneVision is a valuable resource for real-world data enrichment, achieving notable enhancements in model performance and robustness, while significantly reducing the time and costs of real-world data acquisition.
elib-URL des Eintrags: | https://elib.dlr.de/207906/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | August 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||
Stichwörter: | synthetic data, drone detection, deep learning | ||||||||||||||||||||
Veranstaltungstitel: | IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) | ||||||||||||||||||||
Veranstaltungsort: | Tucson, Arisona, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 28 Februar 2025 | ||||||||||||||||||||
Veranstaltungsende: | 4 März 2025 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Automated Model Generation | ||||||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen | ||||||||||||||||||||
Hinterlegt von: | Lenhard, Tamara | ||||||||||||||||||||
Hinterlegt am: | 18 Nov 2024 15:25 | ||||||||||||||||||||
Letzte Änderung: | 18 Nov 2024 15:25 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags