Lenhard, Tamara und Weinmann, Andreas und Franke, Kai und Koch, Tobias (2025) SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection. In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025, Seiten 7637-7647. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025-02-28 - 2025-03-04, Tucson, Arizona, USA. doi: 10.1109/WACV61041.2025.00742. ISBN 979-833151083-1.
|
PDF
- Nur DLR-intern zugänglich
1MB | |
|
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10943801
Kurzfassung
Developing robust drone detection systems is often constrained by the limited availability of large-scale annotated training data and the high costs associated with real-world data collection. However, leveraging synthetic data generated via game engine-based simulations provides a promising and cost-effective solution to overcome this issue. Therefore, we present SynDroneVision, a synthetic dataset specifically designed for RGB-based drone detection in surveillance applications. Featuring diverse backgrounds, lighting conditions, and drone models, SynDroneVision offers a comprehensive training foundation for deep learning algorithms. To evaluate the dataset's effectiveness, we perform a comparative analysis across a selection of recent YOLO detection models. Our findings demonstrate that SynDroneVision is a valuable resource for real-world data enrichment, achieving notable enhancements in model performance and robustness, while significantly reducing the time and costs of real-world data acquisition.
| elib-URL des Eintrags: | https://elib.dlr.de/207906/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | SynDroneVision: A Synthetic Dataset for Image-Based Drone Detection | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | April 2025 | ||||||||||||||||||||
| Erschienen in: | IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/WACV61041.2025.00742 | ||||||||||||||||||||
| Seitenbereich: | Seiten 7637-7647 | ||||||||||||||||||||
| Name der Reihe: | 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) | ||||||||||||||||||||
| ISBN: | 979-833151083-1 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | synthetic data, drone detection, deep learning | ||||||||||||||||||||
| Veranstaltungstitel: | IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) | ||||||||||||||||||||
| Veranstaltungsort: | Tucson, Arizona, USA | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Februar 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 4 März 2025 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Automated Model Generation | ||||||||||||||||||||
| Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen | ||||||||||||||||||||
| Hinterlegt von: | Lenhard, Tamara | ||||||||||||||||||||
| Hinterlegt am: | 18 Nov 2024 15:25 | ||||||||||||||||||||
| Letzte Änderung: | 03 Jun 2025 09:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags