Godbersen, Philipp und Schanz, Daniel und Schröder, Andreas (2024) Peak-CNN: improved particle image localization using single-stage CNNs. Experiments in Fluids, 65 (10), 1 - 19. Springer Nature. doi: 10.1007/s00348-024-03884-z. ISSN 0723-4864.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://doi.org/10.1007/s00348-024-03884-z
Kurzfassung
An important step in the application of Lagrangian particle tracking (LPT) or in general for image-based single particle identification techniques is the detection of particle image locations on the measurement images and their sub-pixel accurate position estimation. In case of volumetric measurements, this constitutes the first step in the process of recovering 3D particle positions, which is usually performed by triangulation procedures. For two-component 2D measurements, the particle localization results directly serve as input to the tracking algorithm. Depending on the quality of the image, the shape and size of the particle images and the amount of particle image overlap, it can be difficult to find all, or even only the majority, of the projected particle locations in a measurement image. Advanced strategies for 3D particle position reconstruction, such as iterative particle reconstruction (IPR), are designed to work with incomplete 2D particle detection abilities but even they can greatly benefit from a more complete detection as ambiguities and position errors are reduced. We introduce a convolutional neural network (CNN) based particle image detection scheme that significantly outperforms current conventional approaches, both on synthetic and experimental data, and enables particle image localization with a vastly higher completeness even at high image densities.
elib-URL des Eintrags: | https://elib.dlr.de/207905/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | article number 153, Electronic ISSN 1432-1114, Print ISSN 0723-4864 | ||||||||||||||||
Titel: | Peak-CNN: improved particle image localization using single-stage CNNs | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 8 Oktober 2024 | ||||||||||||||||
Erschienen in: | Experiments in Fluids | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 65 | ||||||||||||||||
DOI: | 10.1007/s00348-024-03884-z | ||||||||||||||||
Seitenbereich: | 1 - 19 | ||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||
Name der Reihe: | Springer Nature | ||||||||||||||||
ISSN: | 0723-4864 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Lagrangian particle tracking (LPT), convolutional neural network (CNN), iterative particle reconstruction (IPR), improved particle image localization, 3D particle position reconstruction, Shake-The-Box algorithm | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||
Standort: | Göttingen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO | ||||||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||||||
Hinterlegt am: | 20 Nov 2024 15:29 | ||||||||||||||||
Letzte Änderung: | 20 Nov 2024 15:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags