Kühbacher, Birgit und Iglesias-Suarez, Fernando und Kilbertus, Niki und Eyring, Veronika (2024) Towards Physically Consistent Deep Learning For Climate Model Parameterizations. International Conference on Machine Learning and Applications (ICMLA), 2024-10-16, Miami, FL, USA.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://arxiv.org/abs/2406.03920
Kurzfassung
Climate models play a critical role in understanding and projecting climate change. Due to their complexity, their horizontal resolution of about 40-100 km remains too coarse to resolve processes such as clouds and convection, which need to be approximated via parameterizations. These parameterizations are a major source of systematic errors and large uncertainties in climate projections. Deep learning (DL)-based parameterizations, trained on data from computationally expensive short, high-resolution simulations, have shown great promise for improving climate models in that regard. However, their lack of interpretability and tendency to learn spurious non-physical correlations result in reduced trust in the climate simulation. We propose an efficient supervised learning framework for DL-based parameterizations that leads to physically consistent models with improved interpretability and negligible computational overhead compared to standard supervised training. First, key features determining the target physical processes are uncovered. Subsequently, the neural network is fine-tuned using only those relevant features. We show empirically that our method robustly identifies a small subset of the inputs as actual physical drivers, therefore removing spurious non-physical relationships. This results in by design physically consistent and interpretable neural networks while maintaining the predictive performance of unconstrained black-box DL-based parameterizations.
elib-URL des Eintrags: | https://elib.dlr.de/207896/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Towards Physically Consistent Deep Learning For Climate Model Parameterizations | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 16 Oktober 2024 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Machine learning, Deep learning, Climate models | ||||||||||||||||||||
Veranstaltungstitel: | International Conference on Machine Learning and Applications (ICMLA) | ||||||||||||||||||||
Veranstaltungsort: | Miami, FL, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | 16 Oktober 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||
Hinterlegt von: | Bastin, Melanie | ||||||||||||||||||||
Hinterlegt am: | 30 Okt 2024 13:13 | ||||||||||||||||||||
Letzte Änderung: | 30 Okt 2024 13:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags