elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

High-fidelity modelling of composite specimens manufactured with the automated fibre placement technique

Vinot, Mathieu und Raps, Lukas und Toso, Nathalie (2024) High-fidelity modelling of composite specimens manufactured with the automated fibre placement technique. 17. Deutsches LS-DYNA Forum, 2024-10-16, Leinfelden, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Thermoplastic Automated Fiber Placement (AFP) enables the near net shape production of individual lightweight structures, without post-consolidation by means of in-situ consolidation. The placement of multiple tapes with a robotic setup increases the layup accuracy and reduces the amount of manufacturing defects. In spite of this, gaps between the placed tapes or overlaps of these tapes can still cannot be completely avoided, particularly for more complex double-curved structures. Without a post-consolidation process, the defects cannot be mitigated in a subsequent autoclave- or hot-press process. While the precise localization and quantification of these defects is possible with ultrasonic scans, their influence on the local mechanical performances of the laminate cannot be foreseen. To this end, a high-fidelity modelling of AFP-manufactured parts is addressed in this work. The present approach takes benefit of planned or measured paths of every single tape to recreate the geometrical influence of defects and generate a simulation model of the as-built structure. The manufacturing data (tape thickness, tape angle etc.), is mapped on a finite-element model made of layered thick-thick shell elements using a closest point algorithm. Failure mechanisms in the consolidated tapes is simulated with the material card *MAT_262. Additionally, delamination mechanisms are reproduced using the cohesive zone model *MAT_240. The high-fidelity modelling approach is used to virtually investigate the effect of particular defects on the compression and delamination strength of composite samples. The present contribution details the suggested methodology and illustrates its potential to understand manufacturing effects in AFP production. First experimental and numerical investigations are presented.

elib-URL des Eintrags:https://elib.dlr.de/207501/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:High-fidelity modelling of composite specimens manufactured with the automated fibre placement technique
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Vinot, MathieuMathieu.Vinot (at) dlr.dehttps://orcid.org/0000-0003-3394-5142NICHT SPEZIFIZIERT
Raps, LukasLukas.Raps (at) dlr.dehttps://orcid.org/0000-0002-4512-8855170159391
Toso, NathalieNathalie.Toso (at) dlr.dehttps://orcid.org/0000-0003-2803-1450NICHT SPEZIFIZIERT
Datum:Oktober 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:composite materials, manufacturing effects, automated fibre placement, mapping
Veranstaltungstitel:17. Deutsches LS-DYNA Forum
Veranstaltungsort:Leinfelden, Germany
Veranstaltungsart:nationale Konferenz
Veranstaltungsdatum:16 Oktober 2024
Veranstalter :Ansys / DYNAmore
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Schienenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V SC Schienenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ProCo - Propulsion and Coupling
Standort: Stuttgart
Institute & Einrichtungen:Institut für Bauweisen und Strukturtechnologie > Strukturelle Integrität
Institut für Bauweisen und Strukturtechnologie > Bauteilgestaltung und Fertigungstechnologien
Hinterlegt von: Vinot, Mathieu
Hinterlegt am:23 Okt 2024 16:59
Letzte Änderung:23 Okt 2024 16:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.