Dimasaka, Joshua und Geiß, Christian und So, Emily (2024) GLOBAL MAPPING OF EXPOSURE AND PHYSICAL VULNERABILITY DYNAMICS IN LEAST DEVELOPED COUNTRIES USING REMOTE SENSING AND MACHINE LEARNING. ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop, 2024-05-07 - 2024-05-11, Vienna.
PDF
1MB |
Offizielle URL: https://arxiv.org/pdf/2404.01748
Kurzfassung
As the world marked the midterm of the Sendai Framework for Disaster Risk Reduction 2015-2030, many countries are still struggling to monitor their climate and disaster risk because of the expensive large-scale survey of the distribution of exposure and physical vulnerability and, hence, are not on track in reducing risks amidst the intensifying effects of climate change. We present an ongoing effort in mapping this vital information using machine learning and time-series remote sensing from publicly available Sentinel-1 SAR GRD and Sentinel-2 Harmonized MSI. We introduce the development of “OpenSendaiBench” consisting of 47 countries wherein most are least developed (LDCs), trained ResNet-50 deep learning models, and demonstrated the region of Dhaka, Bangladesh by mapping the distribution of its informal constructions. As a pioneering effort in auditing global disaster risk over time, this paper aims to advance the area of large-scale risk quantification in informing our collective long term efforts in reducing climate and disaster risk.
elib-URL des Eintrags: | https://elib.dlr.de/207336/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
Titel: | GLOBAL MAPPING OF EXPOSURE AND PHYSICAL VULNERABILITY DYNAMICS IN LEAST DEVELOPED COUNTRIES USING REMOTE SENSING AND MACHINE LEARNING | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-8 | ||||||||||||||||
Name der Reihe: | arxiv | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | natural hazard risk | ||||||||||||||||
Veranstaltungstitel: | ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop | ||||||||||||||||
Veranstaltungsort: | Vienna | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 7 Mai 2024 | ||||||||||||||||
Veranstaltungsende: | 11 Mai 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||
Hinterlegt von: | Geiß, Christian | ||||||||||||||||
Hinterlegt am: | 02 Dez 2024 08:56 | ||||||||||||||||
Letzte Änderung: | 02 Dez 2024 08:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags