elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Simulating Atmospheric Processes in ESMs and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations

Behrens, Gunnar und Beucler, Tom und Iglesias-Suarez, Fernando und Yu, Sungduk und Gentine, Pierre und Pritchard, Michael und Schwabe, Mierk und Eyring, Veronika (2024) Simulating Atmospheric Processes in ESMs and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations. Oxford Workshop on Model Uncertainty, 2024-09-23 - 2024-09-26, Oxford, Vereinigtes Königreich.

[img] PDF
2MB

Kurzfassung

Deep learning has proven to be a valuable tool to represent subgrid processes in climate models, but most application cases have so far used idealized settings and deterministic approaches. Here, we develop ensemble and stochastic param- eterizations with calibrated uncertainty quantification to learn subgrid convective and turbulent processes and surface radiative fluxes of a superparameterization embedded in an Earth System Model (ESM). We explore three methods to con- struct stochastic parameterizations: 1) a single Deep Neural Network (DNN) with Monte Carlo Dropout; 2) a multi-network ensemble; and 3) a Variational Encoder Decoder with latent space perturbation. We show that the multi-network ensem- bles improve the representation of convective processes in the planetary boundary layer compared to individual DNNs. The respective uncertainty quantification illus- trates that the two latter methods are advantageous compared to a dropout-based DNN ensemble regarding the spread of convective processes. We develop a novel partial coupling strategy to sidestep issues in condensate emulation to evaluate the multi-network parameterizations in online runs coupled to the ESM. We can conduct Earth-like stable runs over more than 5 months with the ensemble ap- proach, while such simulations using individual DNNs fail within days. Moreover, we show that our novel ensemble parameterizations improve the representation of extreme precipitation and the underlying diurnal cycle compared to a traditional parameterization, although faithfully representing the mean precipitation pattern remains challenging. Our results pave the way towards a new generation of param- eterizations using machine learning with realistic uncertainty quantification that significantly improve the representation of subgrid effects.

elib-URL des Eintrags:https://elib.dlr.de/207315/
Dokumentart:Konferenzbeitrag (Vortrag)
Zusätzliche Informationen:This presentation is part of the EERIE project (Grant Agreement No 101081383) funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them. This work has received funding from the SERI under contract #22.00366. This work was funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee (grant number 10057890, 10049639, 10040510, 10040984). This presentation is funded from the European Research Council (ERC) Synergy Grant “Understanding and modeling the Earth System with Machine Learning (USMILE)” under the Horizon 2020 research and innovation programme (Grant agreement No. 855187)
Titel:Simulating Atmospheric Processes in ESMs and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Behrens, GunnarUniversität Bremen und DLR, IPAhttps://orcid.org/0000-0002-5921-5327NICHT SPEZIFIZIERT
Beucler, TomUniversity of Lausanne, Lausanne, Switzerlandhttps://orcid.org/0000-0002-5731-1040NICHT SPEZIFIZIERT
Iglesias-Suarez, FernandoDLR, IPAhttps://orcid.org/0000-0003-3403-8245NICHT SPEZIFIZIERT
Yu, SungdukUniversity of California, Irvine, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gentine, PierreColumbia University, New York, NY, USAhttps://orcid.org/0000-0002-0845-8345NICHT SPEZIFIZIERT
Pritchard, MichaelUniversity of California, Irvine, CA, USAhttps://orcid.org/0000-0002-0340-6327NICHT SPEZIFIZIERT
Schwabe, MierkDLR, IPAhttps://orcid.org/0000-0001-6565-5890NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Earth System Modelling, Convective Processes, Atmosphere, Deep Learning, Subgrid Processes, Stochasticity, Uncertainty Quantification, Multi-Member and Stochastic Parameterizations
Veranstaltungstitel:Oxford Workshop on Model Uncertainty
Veranstaltungsort:Oxford, Vereinigtes Königreich
Veranstaltungsart:Workshop
Veranstaltungsbeginn:23 September 2024
Veranstaltungsende:26 September 2024
Veranstalter :AOPP, University of Oxford
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Behrens, Gunnar
Hinterlegt am:11 Okt 2024 13:55
Letzte Änderung:11 Okt 2024 13:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.