Behrens, Gunnar und Beucler, Tom und Iglesias-Suarez, Fernando und Yu, Sungduk und Gentine, Pierre und Pritchard, Michael und Schwabe, Mierk und Eyring, Veronika (2024) Simulating Atmospheric Processes in ESMs and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations. Oxford Workshop on Model Uncertainty, 2024-09-23 - 2024-09-26, Oxford, Vereinigtes Königreich.
PDF
2MB |
Kurzfassung
Deep learning has proven to be a valuable tool to represent subgrid processes in climate models, but most application cases have so far used idealized settings and deterministic approaches. Here, we develop ensemble and stochastic param- eterizations with calibrated uncertainty quantification to learn subgrid convective and turbulent processes and surface radiative fluxes of a superparameterization embedded in an Earth System Model (ESM). We explore three methods to con- struct stochastic parameterizations: 1) a single Deep Neural Network (DNN) with Monte Carlo Dropout; 2) a multi-network ensemble; and 3) a Variational Encoder Decoder with latent space perturbation. We show that the multi-network ensem- bles improve the representation of convective processes in the planetary boundary layer compared to individual DNNs. The respective uncertainty quantification illus- trates that the two latter methods are advantageous compared to a dropout-based DNN ensemble regarding the spread of convective processes. We develop a novel partial coupling strategy to sidestep issues in condensate emulation to evaluate the multi-network parameterizations in online runs coupled to the ESM. We can conduct Earth-like stable runs over more than 5 months with the ensemble ap- proach, while such simulations using individual DNNs fail within days. Moreover, we show that our novel ensemble parameterizations improve the representation of extreme precipitation and the underlying diurnal cycle compared to a traditional parameterization, although faithfully representing the mean precipitation pattern remains challenging. Our results pave the way towards a new generation of param- eterizations using machine learning with realistic uncertainty quantification that significantly improve the representation of subgrid effects.
elib-URL des Eintrags: | https://elib.dlr.de/207315/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||
Zusätzliche Informationen: | This presentation is part of the EERIE project (Grant Agreement No 101081383) funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them. This work has received funding from the SERI under contract #22.00366. This work was funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee (grant number 10057890, 10049639, 10040510, 10040984). This presentation is funded from the European Research Council (ERC) Synergy Grant “Understanding and modeling the Earth System with Machine Learning (USMILE)” under the Horizon 2020 research and innovation programme (Grant agreement No. 855187) | ||||||||||||||||||||||||||||||||||||
Titel: | Simulating Atmospheric Processes in ESMs and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | September 2024 | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | Earth System Modelling, Convective Processes, Atmosphere, Deep Learning, Subgrid Processes, Stochasticity, Uncertainty Quantification, Multi-Member and Stochastic Parameterizations | ||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | Oxford Workshop on Model Uncertainty | ||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Oxford, Vereinigtes Königreich | ||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 September 2024 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 26 September 2024 | ||||||||||||||||||||||||||||||||||||
Veranstalter : | AOPP, University of Oxford | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Behrens, Gunnar | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 11 Okt 2024 13:55 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 11 Okt 2024 13:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags