elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Random forest regression kriging modeling for soil organic carbon density estimation using multi-source environmental data in central Vietnamese forests

Ho, Viet Hoang und Morita, Hidenori und Bachofer, Felix und Ho, Thanh Ha (2024) Random forest regression kriging modeling for soil organic carbon density estimation using multi-source environmental data in central Vietnamese forests. Modeling Earth Systems and Environment, Seiten 1-22. Springer Nature. doi: 10.1007/s40808-024-02158-1. ISSN 2363-6203.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
7MB

Offizielle URL: https://dx.doi.org/10.1007/s40808-024-02158-1

Kurzfassung

Forest soil organic carbon plays a vital role in the terrestrial carbon cycle. Accurately analyzing the spatial distribution of soil organic carbon density (SOCD) is therefore necessary for sustainable forest management and climate change mitigation. Previous studies explored the potential of random forest (RF) in modeling forest SOCD using various environmental data sources. However, how forest SOCD prediction would be affected by using random forest regression kriging (RFRK), which integrates the predictive power of RF in generating deterministic trends and the capability of the ordinary kriging (OK) in handling spatial autocorrelation structure of residuals, based on the environmental data sources and their combinations remains elusive and deserves further exploration. For this purpose, 104 soil samples were collected at a depth of 30 cm in forest ecosystems of Central Vietnam, and 33 environmental covariates were derived from Sentinel-2 (S2) imagery, Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (AL2) imagery, digital elevation model (DEM), and climatic data. Using a leave-one-out cross-validation procedure to evaluate and compare the model performances, four metrics, including coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and relative improvement (RI), were calculated. The results showed that enhanced RFRK performance for forest SOCD estimation was found with the inclusion of additional environmental data sources, with RFRK based on all data sources achieving a high accuracy (R2 = 0.78, MAE = 8.28 t·ha−1, and RMSE = 10.54 t·ha−1). The comparison of the RF and RFRK models exhibited that additionally interpolated residuals by OK were more accurate than only considering the influences of predictor covariates. The relative improvement of the RFRK models over the RF models in forest SOCD estimation was notable, with RI(R2) ranging from 8.20 to 65.00%, RI (MAE) ranging from 8.18 to 21.07%, and RI(RMSE) ranging from 6.76 to 18.18%. The result from our case study emphasizes the robustness of RFRK using S2, AL2, DEM, and climatic data in accurately predicting forest SOCD.

elib-URL des Eintrags:https://elib.dlr.de/207176/
Dokumentart:Zeitschriftenbeitrag
Titel:Random forest regression kriging modeling for soil organic carbon density estimation using multi-source environmental data in central Vietnamese forests
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ho, Viet HoangGraduate School of Environmental and Life Science, Okayama Universityhttps://orcid.org/0009-0001-8045-0348NICHT SPEZIFIZIERT
Morita, HidenoriGraduate School of Environmental and Life Science, Okayama UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bachofer, FelixFelix.Bachofer (at) dlr.dehttps://orcid.org/0000-0001-6181-0187NICHT SPEZIFIZIERT
Ho, Thanh HaUniversity of Agriculture and Forestry, Hue UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:Modeling Earth Systems and Environment
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s40808-024-02158-1
Seitenbereich:Seiten 1-22
Verlag:Springer Nature
ISSN:2363-6203
Status:veröffentlicht
Stichwörter:Digital soil mapping, forests, earth observation, Vietnam
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Bachofer, Dr. Felix
Hinterlegt am:07 Nov 2024 13:47
Letzte Änderung:18 Nov 2024 12:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.