Padilla-Zepeda, Efrain und Alonso, Kevin und de los Reyes, Raquel und Torres-Roman, Deni Librado und Pertiwi, Avi Putri (2024) A Deep Learning Approach for Imagery Masking of Spectral Sensors. In: 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024, Seiten 8541-8546. IEEE. IGARSS 2024, 2024-07-07 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10642339. ISBN 979-8-3503-6032-5. ISSN 2153-7003.
PDF
4MB |
Offizielle URL: https://dx.doi.org/10.1109/igarss53475.2024.10642339
Kurzfassung
Currently, some of the implemented atmospheric correction processors for remote sensing spectral sensors, use masking algorithms based on thresholding of spectral indices with sensor Top-Of-Atmosphere (TOA) reflectance. This concept allows the use of a limited amount of spectral bands, which is optimal for multi-spectral sensors (~10-20 bands), but for the case of the high spectral dimensionality of hyper-spectral sensors, spectral thresholding underutilizes the number of available bands. Given this limitation, we propose a masking algorithm which performs spatial and spectral feature extraction based on a 2D convolutional neural network, fitting the model with the available classification maps from the Python-based Atmospheric COrrection (PACO) processor. The training samples are selected based on their uncertainty to belong to a given class. The validation is performed using two independent human expert labelled datasets. The resulting classification maps show an improvement from the original ones of PACO.
elib-URL des Eintrags: | https://elib.dlr.de/206806/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | A Deep Learning Approach for Imagery Masking of Spectral Sensors | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 5 September 2024 | ||||||||||||||||||||||||
Erschienen in: | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10642339 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 8541-8546 | ||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||||||
ISBN: | 979-8-3503-6032-5 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | classification, masking algorithm, spectral imagery, atmospheric correction, pixel filtering | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2024 | ||||||||||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Padilla, Efrain | ||||||||||||||||||||||||
Hinterlegt am: | 15 Okt 2024 14:37 | ||||||||||||||||||||||||
Letzte Änderung: | 15 Okt 2024 14:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags