Bittner, Ksenia und Recla, Michael und Auer, Stefan und Schmitt, Michael (2024) Enhancing Building Shape Details Through Deep Learning in Single-Image SAR-Based DSM. In: 2024 IEEE International Geoscience and Remote Sensing Symposium, Seiten 2625-2629. IEEE Geoscience and Remote Sensing Society. IGARSS 2024, 2024-07-07 - 2024-07-12, Athen, Griechenland. doi: 10.1109/IGARSS53475.2024.10640848.
PDF
6MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10640848
Kurzfassung
Due to the reliability of data acquisition, synthetic aperture radar (SAR) sensors are fundamental for remote sensing applications with the need for flexibility and fast response. For urban applications, besides the analysis of salient point signatures, extracted height information allows to evaluate the state of buildings. Recently developed deep learning approaches enable height estimates in situations where only one SAR image of an area of interest is available. However, building shapes still exhibit low quality in the resulting digital surface models (DSMs). This paper presents how derived surface models from the SAR image can be refined with knowledge about the shape of buildings. For that purpose, building representations are learned with a neural network from optical images and CityGML models. The results demonstrate that our model not only effectively transfers knowledge to process DSMs from various data sources but also showcases the ability to generalize across different regions.
elib-URL des Eintrags: | https://elib.dlr.de/206793/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Enhancing Building Shape Details Through Deep Learning in Single-Image SAR-Based DSM | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10640848 | ||||||||||||||||||||
Seitenbereich: | Seiten 2625-2629 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | IEEE Geoscience and Remote Sensing Society | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | AI4BuildingModeling, Synthetic Aperture Radar, Digital Surface Models, Machine Learning, Artifical Intelligence, Data Fusion, Urban Applications | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2024 | ||||||||||||||||||||
Veranstaltungsort: | Athen, Griechenland | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||||||
Hinterlegt am: | 27 Sep 2024 10:12 | ||||||||||||||||||||
Letzte Änderung: | 27 Sep 2024 10:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags