elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Adaptation of the Low Dissipation Low Dispersion Scheme for Reactive Multi Component Flows on Unstructured Grids Using Density-Based Solvers

Lipkowicz, Jonathan Timo und Gövert, Simon und Janus, Bertram (2024) Adaptation of the Low Dissipation Low Dispersion Scheme for Reactive Multi Component Flows on Unstructured Grids Using Density-Based Solvers. In: 69th ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, GT 2024. ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, 2024-06-24 - 2024-06-28, London, United Kingdom. doi: 10.1115/GT2024-127496. ISBN 978-079188807-0.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://dx.doi.org/10.1115/GT2024-127496

Kurzfassung

The Low Dissipation Low Dispersion (LD2) second order accurate scheme has been proven successful for scale-resolving simulations via finite volume Computational Fluid Dynamics (CFD) solvers. The improved stability attributes stem from a novel combination of a skew-symmetric split form for convective terms in the governing equations and matrix-valued artificial dissipation fluxes. However, additional challenges arise in simulating reactive multi-component flows due to the presence of steep gradients in the flame zone and spatially varying gas properties. In this study, we substitute the previously used skew-symmetric scheme with the recently proposed Kinetic Energy and Entropy Preserving (KEEP) scheme, which employs quadratic and cubic split forms of convective terms, thereby further augmenting stability. Given the non-smoothness of fluid interfaces in simulations of reactive flow, the use of upwind fluxes becomes imperative for the convection of reactive scalars in order to limit total variation (TV). This choice also implies upwind fluxes for internal energy, as it depends on the local scalar composition. All remaining convective terms are treated with central discretizations from the original KEEP scheme, utilizing the spatial reconstruction of the LD2 scheme to minimize dispersive errors. It is shown by numerical assessments that this treatment effectively minimizes spurious pressure oscillations that otherwise appear in both single and multi-component flows. The absolute flux Jacobian for the calculation of dissipation fluxes is efficiently computed by expanding Turkel's approach for thermally perfect gas mixtures. The partial pressure derivatives with respect to conservative variables, inherent in the absolute flux Jacobian, are approximated when using the Flamelet Generated Manifolds (FGM) combustion model. The proposed scheme is evaluated through scale resolving simulations of the Cambridge burner flame SWB1 on a fully unstructured grid using the density-based solver TRACE, employing both Finite Rate Chemistry (FRC) and FGM combustion models. Comparative analysis is conducted against results obtained using the all-speed scheme SLAU2. The findings demonstrate the superior performance of the proposed scheme in handling turbulent reactive multi-component flows.

elib-URL des Eintrags:https://elib.dlr.de/206791/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Adaptation of the Low Dissipation Low Dispersion Scheme for Reactive Multi Component Flows on Unstructured Grids Using Density-Based Solvers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lipkowicz, Jonathan TimoJonathan.Lipkowicz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gövert, SimonSimon.Goevert (at) dlr.dehttps://orcid.org/0000-0003-4593-1776NICHT SPEZIFIZIERT
Janus, BertramBertram.Janus (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 August 2024
Erschienen in:69th ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, GT 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2024-127496
ISBN:978-079188807-0
Status:veröffentlicht
Stichwörter:CFD, combustion, turbulent, flame
Veranstaltungstitel:ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition
Veranstaltungsort:London, United Kingdom
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:24 Juni 2024
Veranstaltungsende:28 Juni 2024
Veranstalter :The American Society of Mechanical Engineers
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Komponenten und Emissionen
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Brennkammer
Hinterlegt von: Gövert, Simon
Hinterlegt am:02 Dez 2024 20:16
Letzte Änderung:12 Dez 2024 15:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.