Hampe, Jens (2024) Improvement and development of simulation scenarios for air traffic management using Large Language Models (LLM) Artificial intelligence (AI) in the context of safe and efficient air traffic management. In: DLRK 2024. DLRK 2024, 2024-09-30 - 2024-10-02, Germany, Hamburg. doi: 10.60575/2fw9-1y96.
![]() |
PDF
824kB |
Offizielle URL: https://dlrk2024.dglr.de/fileadmin/inhalte/veranstaltungen/dlrk/dlrk2024/Programm/Postersitzung/DLRK2024_630383.pdf
Kurzfassung
This contribution presents an innovative approach to improving the development of simulation scenarios for Air Traffic Management (ATM) through the utilization of Large Language Models (LLMs). Traditional methods of scenario creation often rely on manual scripting, which can be time-consuming and limited in scope. The use of LLMs offers a novel solution by automating scenario generation based on natural text or speech input. By analyzing large text datasets, prompt engineering, and fine-tuning, LLMs can extract relevant information and generate scenarios that reflect various operational conditions, including airspace congestion, aircraft malfunctions, and weather events. This approach not only simplifies the process of scenario development but also enables the creation of dynamic and adaptable simulations that closely mimic real-world scenarios. Furthermore, the integration of LLMs into ATM simulations facilitates scenario customization, allowing users to tailor scenarios to specific training objectives or research requirements. This contribution highlights the potential of LLMs to revolutionize the development of simulation scenarios for ATM and contribute to more effective training, research, and system optimization in the aviation domain.
elib-URL des Eintrags: | https://elib.dlr.de/206762/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||
Titel: | Improvement and development of simulation scenarios for air traffic management using Large Language Models (LLM) Artificial intelligence (AI) in the context of safe and efficient air traffic management | ||||||||
Autoren: |
| ||||||||
Datum: | 30 Oktober 2024 | ||||||||
Erschienen in: | DLRK 2024 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
DOI: | 10.60575/2fw9-1y96 | ||||||||
Name der Reihe: | Deutscher Luft- und Raumfahrtkongress 2024 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Large Language Models, Artificial Intelligence, Machine Learning, Air Traffic Management, Methods, Modelling Simulation, AI Applications | ||||||||
Veranstaltungstitel: | DLRK 2024 | ||||||||
Veranstaltungsort: | Germany, Hamburg | ||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||
Veranstaltungsbeginn: | 30 September 2024 | ||||||||
Veranstaltungsende: | 2 Oktober 2024 | ||||||||
Veranstalter : | DGLR - Deutsche Gesellschaft für Luft- und Raumfahrt | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Luftfahrt | ||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Lufttransportbetrieb und Folgenabschätzung | ||||||||
Standort: | Braunschweig | ||||||||
Institute & Einrichtungen: | Institut für Flugführung > ATM-Simulation | ||||||||
Hinterlegt von: | Hampe, Jens | ||||||||
Hinterlegt am: | 18 Okt 2024 17:49 | ||||||||
Letzte Änderung: | 20 Jan 2025 09:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags