elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Thermal state of the Martian interior at present day as constrained by elastic lithosphere thickness estimates and recent volcanic activity

Plesa, Ana-Catalina und Broquet, A. und Voigt, Joana R.C. und Wieczorek, M. und Hauber, Ernst und Breuer, Doris (2024) Thermal state of the Martian interior at present day as constrained by elastic lithosphere thickness estimates and recent volcanic activity. European Geoscience Union General Assembly, 2024-04-14 - 2024-04-19, Vienna, Austria. doi: 10.5194/egusphere-egu24-12473.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://meetingorganizer.copernicus.org/EGU24/EGU24-12473.html

Kurzfassung

Previous studies have constrained the lithosphere at the north and south poles of Mars to be thick and cold, with elastic thicknesses of 330 to 450km [1], and >150km [2], respectively. The elastic thickness characterizes the stiffness of the lithosphere in response to loading and is directly linked to the thermal state of the lithosphere and the surface heat flow. Thus, elastic thickness estimates at the north and south poles provide crucial constraints on the present-day surface heat flow on Mars. Additional information on the present-day planetary thermal state comes from evidence of ongoing melting in the mantle, as indicated by the presence of both young lava flows in Tharsis and Elysium provinces and an active mantle plume beneath Elysium Planitia [3,4,5]. In this study we explore the thermal evolution of Mars using global 3D geodynamic models. These models improve upon our previous work [6] by including updated interior structure information from the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission [7,8] and by considering constraints on the present-day thermal state of the planet as noted above. Thermal evolution models using the most recent crustal thickness estimates [8,9], require that the crust contains more than half of the total amount of heat producing elements (HPEs) to explain localized recent volcanic activity on Mars [8]. We find that the crustal thickness variations control the surface heat flow and the elastic thickness pattern, as well as the location of melting zones in the present-day Martian mantle. The strongest constraint for the thermal history and present-day state of the interior is given by the elastic thickness at the north pole. While at the south pole, all models show values >150km, compatible with the latest estimate [2], only a few models present an elastic thickness >300km at the north pole, with values still lower than the recent estimate of [1]. A larger elastic thickness at the north pole could indicate: 1) a northern crust less enriched in HPEs, 2) a colder lithosphere due to a weaker blanketing effect caused by a thinner or higher-conductivity crust on the northern hemisphere, 3) ongoing viscoelastic relaxation, suggesting that the observed surface deflection beneath the north polar cap is not the final one [1], or a combination thereof. In contrast to the cold lithosphere inferred for the Martian polar regions, recent volcanic activity suggests a warmer interior beneath Tharsis and Elysium provinces [3,4]. This reveals an important spatial variability in the thermal state and thickness of the Martian lithosphere. Our work shows that only a narrow range of models can match elastic thickness estimates at the polar caps and explain Mars’ recent volcanic activity, thereby providing important insights into the structure and thermal evolution of the interior.

elib-URL des Eintrags:https://elib.dlr.de/206721/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Thermal state of the Martian interior at present day as constrained by elastic lithosphere thickness estimates and recent volcanic activity
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Plesa, Ana-CatalinaAna.Plesa (at) dlr.dehttps://orcid.org/0000-0003-3366-7621NICHT SPEZIFIZIERT
Broquet, A.Lunar and Planetary Laboratory, Univ. of ArizonaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Voigt, Joana R.C.Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wieczorek, M.Institut de Physique du Globe de Paris (France)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hauber, ErnstErnst.Hauber (at) dlr.dehttps://orcid.org/0000-0002-1375-304XNICHT SPEZIFIZIERT
Breuer, DorisDoris.Breuer (at) dlr.dehttps://orcid.org/0000-0001-9019-5304NICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu24-12473
Status:veröffentlicht
Stichwörter:Mars, interior, thermal evolution, elastic lithosphere thickness, volcanism
Veranstaltungstitel:European Geoscience Union General Assembly
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 April 2024
Veranstaltungsende:19 April 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetary Evolution and Life, R - Exploration des Sonnensystems, R - Projekt InSight - HP3
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Institut für Planetenforschung > Planetengeologie
Hinterlegt von: Plesa, Dr. Ana-Catalina
Hinterlegt am:27 Sep 2024 10:20
Letzte Änderung:27 Sep 2024 10:20

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.