elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Continuum Modelling as Tool for Optimizing the Cell Design of Mg-Ion and Mg-S Batteries

Drews, Janina und Simanjuntak, Esther Kezia und Hörmann, Johannes und Jankowski, Piotr und Maça, Rudi Ruben und Wang, Liping und García Lastra, Juan Maria und Blazquez, J. Alberto und Zhao-Karger, Zhirong und Fichtner, Maximilian und Danner, Timo und Latz, Arnulf (2024) Continuum Modelling as Tool for Optimizing the Cell Design of Mg-Ion and Mg-S Batteries. 5th International Symposium on Magnesium Batteries (MagBatt V), 2024-09-18, Ulm, Deutschland.

[img] PDF
46kB

Kurzfassung

Regarding energy density, safety, cost, and sustainability rechargeable magnesium batteries (RMBs) are a very promising next-generation energy storage technology. However, for a successful commercialization of magnesium batteries there are still some fundamental and technical challenges to overcome, which are mainly caused by the high charge density of the bivalent cation and the consequential strong coulomb interactions with anions and solvent molecules. A decisive bottleneck of the RMB technology is to establish a highly reversible, high voltage / high capacity cathode. Up to date Chevrel phase (CP) Mo6S8 is still considered as benchmark intercalation cathode. By understanding of beneficial and limiting processes of this model electrode the development of novel high-capacity / high-voltage cathodes may be accelerated. Thereby, it is well-known that the morphology of an intercalation material can strongly influence the battery performance and smaller particles as well as thinner electrodes are common strategies for avoiding adverse effects of transport limitations. Nevertheless, the low theoretical capacity and redox potential of CP intrinsically limits the reachable energy density of the battery, which is a major issue regarding practical applications. Therefore, high capacity conversion cathodes based on sulfur are a promising strategy for making RMBs attractive candidates for emerging energy storage markets. However, self-discharge and shuttling of dissolved polysulfides are major issues of Mg-S batteries, which cause loss of active material on the cathode side and surface passivation of the Mg anode. Consequently, the dissolution and diffusion of sulfur and polysulfides strongly limits the cycling stability, capacity retention, reversibility and lifetime of Mg-S batteries. Strategies to mitigate the polysulfide shuttle and its adverse effects include the design of novel sulfur hosts, electrolytes and functional separators. Besides spatial confinement by encapsulating the sulfur into the cathode, chemical interactions like covalent bonds and adsorption are a promising approach to reduce the migration of sulfur containing species to the Mg anode. Interestingly, CP is not only electrochemically active itself but it can also strongly adsorb polysulfides and moreover, enhance the electrochemical kinetics of the conversion reaction, which significantly enhances the performance of Mg-S batteries. In our contribution we carefully study Mg-ion batteries with a CP cathode as well Mg-S batteries with CP additive as adsorbent and redox mediator to get a better understanding of how to overcome undesired limitations as well as how to maximize beneficial effects. Therefore, we present a newly developed continuum model for CP and its integration into a simulation framework for metal-sulfur batteries. The parameterization and validation of the model is based on DFT calculations and experimental data. Different kind of (transport) limitations and their impact on the battery performance are studied in detail. Thereby, we focus on the influence of the battery design and especially the 3D microstructure. Moreover, different ways to incorporate CP into Mg-S batteries and different ratios of S to CP are analyzed. All in all, the combination of different modelling techniques with experimental measurements provides important insights into the operation of RMBs and enables an optimization of the cell design.

elib-URL des Eintrags:https://elib.dlr.de/206637/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Continuum Modelling as Tool for Optimizing the Cell Design of Mg-Ion and Mg-S Batteries
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Drews, JaninaJanina.Drews (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Simanjuntak, Esther KeziaEsther.Simanjuntak (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hörmann, JohannesJohannes.Hoermann (at) dlr.dehttps://orcid.org/0000-0002-4955-1896NICHT SPEZIFIZIERT
Jankowski, PiotrTechnical University of Denmark (DTU)https://orcid.org/0000-0003-0178-8955NICHT SPEZIFIZIERT
Maça, Rudi RubenCIDETEC Energy Storagehttps://orcid.org/0000-0003-2329-8551NICHT SPEZIFIZIERT
Wang, LipingKarlsruhe Institute of Technology (KIT)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
García Lastra, Juan MariaTechnical University of Denmark (DTU)https://orcid.org/0000-0001-5311-3656NICHT SPEZIFIZIERT
Blazquez, J. AlbertoCIDETEC Energy Storagehttps://orcid.org/0000-0003-3391-9788NICHT SPEZIFIZIERT
Zhao-Karger, ZhirongKarlsruhe Institute of Technology (KIT)https://orcid.org/0000-0002-7233-9818NICHT SPEZIFIZIERT
Fichtner, MaximilianKarlsruhe Institute of Technology (KIT)https://orcid.org/0000-0002-7127-1823NICHT SPEZIFIZIERT
Danner, TimoTimo.Danner (at) dlr.dehttps://orcid.org/0000-0003-2336-6059NICHT SPEZIFIZIERT
Latz, ArnulfArnulf.Latz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:magnesium battery, Chevrel Phase, sulfur, continuum modelling
Veranstaltungstitel:5th International Symposium on Magnesium Batteries (MagBatt V)
Veranstaltungsort:Ulm, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:18 September 2024
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Elektrochemische Energiespeicherung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Drews, Janina
Hinterlegt am:16 Okt 2024 17:33
Letzte Änderung:16 Okt 2024 17:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.