elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Countering Fungal Threats in Space: Advanced Surface Functionalization and Aspergillus niger Stress Responses

Timofeev, S.M. und Siems, K. und Schiele, A. und Krämer, C. und Müller, D. und Ahmed, A. und Brix, K. und Kautenburger, R. und Mücklich, F. und Moeller, R. (2024) Countering Fungal Threats in Space: Advanced Surface Functionalization and Aspergillus niger Stress Responses. EANA 2024, 2024-09-03 - 2024-09-06, Graz, Austria.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Microbial life has long been a persistent presence in diverse environments, prompting extensive research into the interactions between microorganisms and antimicrobial agents. In the context of human spaceflight, microorganisms such as Aspergillus niger and Penicillium spp. have been identified as predominant species in HEPA filters and dust within the International Space Station (ISS). Fungal contamination, in particular, poses significant threats to built - materials in space, potentially compromising the structural integrity of confined environments and adversely affecting human health. This highlights the critical need to understand fungal responses to stress in extraterrestrial settings to ensure the safety and longevity of future space habitats. Our study focuses on the fungal stress response to novel functionalized copper surfaces. We investigated the interactions between A. niger and innovative antimicrobial surfaces that combine actively antimicrobial copper and copper-alloys with micro-topographies created through Ultrashort Pulses Direct Laser Interference Patterning (USP-DLIP). These surfaces are engineered to exploit the antimicrobial properties of copper while enhancing its effectiveness through precisely patterned microstructures. Contact-killing assays were conducted using spores from both a wild-type and a melanindeficient mutant strain of A. niger. The results revealed an unexpected heterogeneity in spore germination responses to copper stress, indicating that A. niger exhibits a sophisticated regulation of copper homeostasis. This variability suggests that different strains of A. niger may possess distinct mechanisms for coping with copper-induced stress, which could have significant implications for the development of antifungal strategies in space. To further explore these findings, we employed various microscopy methods, including Fluorescence and Scanning Electron Microscopy (SEM). Fluorescence microscopy allowed us to observe the viability and morphological changes in A. niger spores upon contact with the coppersurfaces, while SEM provided detailed images of the spore surface structure and any physical damage incurred. These techniques helped us to correlate the physical and physiological changes in the spores with their survival rates and stress responses. In addition to microscopy, we plan to conduct detailed RNA profile analyses to uncover the molecular mechanisms underlying the observed damage. By analyzing the expression levels of genes involved in stress response, metal ion homeostasis, and spore germination, we aim to identify the specific pathways that A. niger utilizes to counteract copper-induced stress. This molecular-level understanding will provide valuable insights into the intricacies of A. niger's response to copper-induced stress and aid in the design of more effective antimicrobial surfaces. Our research addresses fungal contamination challenges in space environments and contributes to the advancement of antimicrobial materials, ensuring the safety and integrity of built - environments in space. By understanding how A. niger reacts to copper stress, we can develop robust strategies to mitigate fungal contamination on spacecraft and space habitats. Developing novel antimicrobial strategies are crucial for maintaining the health of astronauts and the structural integrity of space habitats, ultimately supporting the long-term success of future human space exploration.

elib-URL des Eintrags:https://elib.dlr.de/206515/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Countering Fungal Threats in Space: Advanced Surface Functionalization and Aspergillus niger Stress Responses
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Timofeev, S.M.Stella.Koch (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Siems, K.Katharina.Siems (at) dlr.dehttps://orcid.org/0000-0001-7349-0846NICHT SPEZIFIZIERT
Schiele, A.Institute of Aerospace Medicine, German Aerospace Center, Radiation Biology Department, Cologne, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krämer, C.Institute of Aerospace Medicine, German Aerospace Center, Radiation Biology Department, Cologne, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Müller, D.Chair of Functional Materials, Department of Materials Science, Saarland University, Saarbrücken, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ahmed, A.Chair of Functional Materials, Department of Materials Science, Saarland University, Saarbrücken, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Brix, K.Department of Inorganic Solid-State Chemistry, Elemental Analysis, Saarland University, Saarbrücken, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kautenburger, R.Department of Inorganic Solid-State Chemistry, Elemental Analysis, Saarland University, Saarbrücken, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mücklich, F.Chair of Functional Materials, Department of Materials Science, Saarland University, Saarbrücken, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Moeller, R.Ralf.Moeller (at) dlr.dehttps://orcid.org/0000-0002-2371-0676NICHT SPEZIFIZIERT
Datum:3 September 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Fungal contamination, Space, mitigate fungal contamination on spacecraft and space habitats
Veranstaltungstitel:EANA 2024
Veranstaltungsort:Graz, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:3 September 2024
Veranstaltungsende:6 September 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt ISS LIFE 2.0
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Strahlenbiologie
Hinterlegt von: Kopp, Kerstin
Hinterlegt am:30 Sep 2024 09:54
Letzte Änderung:30 Sep 2024 09:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.