Tang, Qiang und Zhang, Guoqing und Yao, Tandong und Wieland, Marc und Liu, Lin und Kaushik, Saurabh (2024) Automatic extraction of glacial lakes from Landsat imagery using deep learning across the Third Pole region. Remote Sensing of Environment, 315, Seiten 1-16. Elsevier. doi: 10.1016/j.rse.2024.114413. ISSN 0034-4257.
PDF
- Nur DLR-intern zugänglich bis September 2025
- Verlagsversion (veröffentlichte Fassung)
12MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0034425724004395
Kurzfassung
The Tibetan Plateau and surroundings, commonly referred to as the Third Pole region, has the largest ice store outside the Arctic and Antarctic regions. Glacial lakes in the Third Pole region are expanding rapidly as glaciers thin and retreat. The Landsat satellite series is the most popular for mapping glacial lakes, benefiting from long-term archived data and suitable spatial resolution (30 m since 1990). However, the homogeneous mapping of high-quality, large-scale, and multi-temporal glacial lake inventories using Landsat imagery relies heavily on visual inspection and manual editing due to mountain shadows, wet ice, frozen lakes, and snow cover on lake boundaries, which is time consuming and labour-intensive. Deep learning methods have been applied to glacial lake extraction in the Third Pole and other regions, yet these methods are either concentrated on small test sites without large-scale applications or in polar regions. In this study, several classical deep convolutional neural networks were evaluated, and the DeepLabv3+ with Mobilenetv3 backbone performed best, with a high accuracy of mean intersection over union (mIoU) of 94.8 % and a low loss error of 0.4 %. The proposed method demonstrated robustness in challenging conditions such as mountain shadows, frozen or partially frozen lakes, wet ice and river contact, all without requiring extensive manual correction. Compared with manual delineation, the model’s prediction has a precision rate of 86 %, recall rate of 85 %, and F1-score of 85 %. The area extracted by the model shows a strong correlation with the manual delineation (r 2 = 0.97, slope = 0.94) and a high intersection over union (IoU > 0.8) of the predicted areas. A test of large-scale glacial lake mapping based on the developed automated model in 2020 across the Third Pole region shows the robust performance with 29,429 glacial lakes larger than 0.0054 km 2 with a total area of 1779.9 km 2 (including non-glacier-fed lakes). The model trained in this study can be fine-tuned for large-scale mapping of glacial lakes in other mountain regions worldwide.
elib-URL des Eintrags: | https://elib.dlr.de/206369/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Automatic extraction of glacial lakes from Landsat imagery using deep learning across the Third Pole region | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | September 2024 | ||||||||||||||||||||||||||||
Erschienen in: | Remote Sensing of Environment | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 315 | ||||||||||||||||||||||||||||
DOI: | 10.1016/j.rse.2024.114413 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-16 | ||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||
ISSN: | 0034-4257 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | DeepLabv3+; Mobilenetv3 backbone; Glacial lake mapping; Mountain shadow | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||
Hinterlegt von: | Wieland, Dr Marc | ||||||||||||||||||||||||||||
Hinterlegt am: | 12 Nov 2024 13:15 | ||||||||||||||||||||||||||||
Letzte Änderung: | 12 Nov 2024 13:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags