elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-Sensor Glacier Surface Classification Using Confidence-Aware Explainable Inverse-Mapping Neural Network

Joshi, Gunjan und Baumhoer, Celia und Dietz, Andreas und Natsuaki, Ryo und Hirose, Akira (2024) Multi-Sensor Glacier Surface Classification Using Confidence-Aware Explainable Inverse-Mapping Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Seiten 1-19. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2024.3454789. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
208MB

Offizielle URL: https://ieeexplore.ieee.org/document/10666818

Kurzfassung

Mapping snow cover at the end of the ablation season allows us to extract the snow line altitude (SLA). The SLA is an important proxy for the equilibrium line altitude of a glacier and an indicator of glacier health. With the increase in both active and passive remote sensing satellites, the accuracy and effectiveness of glacier monitoring can be enhanced, as the two sensors offer complementary information. In this paper, we focus on the combination of Sentinel-1 synthetic aperture radar (SAR) and Sentinel2 optical data to perform glacial classification using an explainable neural network and thereafter determine SLA. Additionally, confidence-aware inverse mapping dynamics is used to understand the result reliability and the individual sensor contributions. The proposed method is applied to the Great Aletsch Glacier in the European Alps, where an overall accuracy of 83% is observed compared to the ground truth data. We observe the glacier from 2015 to 2023, noting a retreat of the SLA to higher elevations by 36 to 133 m depending on the region. Apart from climaterelated mass loss, the European Alps are also affected by dust deposited during Sahara dust events (SDE) and contamination from algae. Thus, in this work, we assess the annual presence of contaminated snow on the glacier. The inverse mapping dynamics reveals the contributions of both SAR and optical sensor data in the classification. This multi-sensor approach is shown to mitigate the limitations of single-source data, providing a comprehensive understanding of glacier dynamics in the context of climate change.

elib-URL des Eintrags:https://elib.dlr.de/206308/
Dokumentart:Zeitschriftenbeitrag
Titel:Multi-Sensor Glacier Surface Classification Using Confidence-Aware Explainable Inverse-Mapping Neural Network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Joshi, GunjanTokio UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Baumhoer, CeliaCelia.Baumhoer (at) dlr.dehttps://orcid.org/0000-0003-1339-2288NICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Natsuaki, RyoTokio Universityhttps://orcid.org/0000-0003-2291-4375NICHT SPEZIFIZIERT
Hirose, AkiraThe University of TokyoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:6 September 2024
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2024.3454789
Seitenbereich:Seiten 1-19
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Glacier, synthetic aperture radar (SAR), optical satellite, explainable neural network, inverse mapping, Sentinel-1, Sentinel-2, snow line altitude (SLA), sahara dust events (SDE)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Dietz, Andreas
Hinterlegt am:07 Nov 2024 13:57
Letzte Änderung:18 Nov 2024 12:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.