Jilke, Lukas und Raddatz, Florian und Hosters, Norbert und Behr, Marek und Wende, Gerko (2024) Federated Physics-Informed Machine Learning for Ultrasonic Structural Health Monitoring of Aircraft Structures. 9th European Congress on Computational Methods in Applied Sciences and Engineering, 2024-06-03 - 2024-06-07, Lissabon, Portugal.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Structural health monitoring (SHM) systems employing ultrasonic guided waves have the capability to effectively monitor composite aerospace structures and detect instances of material degradation. In recent years, an increasing number of machine learning methods in structural health monitoring have emerged, leveraging their capacity to detect anomalies. This can serve as a foundation for predicting maintenance requirements and improving the operational efficiency of aircraft. However, large amounts of labeled sensor datasets for pristine and representative damaged specimens are required for supervised machine learning methods to generate reliable predictions. This is a major challenge, especially for a broad range of damages and flaws in composite materials. Additionally, the application of federated learning in operational aircraft fleets based on SHM data aims to enhance prediction accuracy by enabling collaborative model training across decentralized aircraft. Incorporating physical knowledge into the loss function of the neural network within a decentralized federated learning architecture can lead to a reduction in the amount of labeled datasets required, allowing for collaborative learning throughout aircraft fleets while preserving data privacy. As a first step towards integrating guided waves propagation behavior into the neural network's training process, multiple Physics-Informed Neural Networks embedded into a federated learning architecture is introduced as a semi-unsupervised federated learning approach incorporating the linear second-order partial differential acoustic wave equation.
elib-URL des Eintrags: | https://elib.dlr.de/206258/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Federated Physics-Informed Machine Learning for Ultrasonic Structural Health Monitoring of Aircraft Structures | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 Juni 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Structural health monitoring (SHM), Machine Learning, Physics-Informed Neural Network, Federated Learning | ||||||||||||||||||||||||
Veranstaltungstitel: | 9th European Congress on Computational Methods in Applied Sciences and Engineering | ||||||||||||||||||||||||
Veranstaltungsort: | Lissabon, Portugal | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 Juni 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 7 Juni 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien, R - Maschinelles Lernen | ||||||||||||||||||||||||
Standort: | Aachen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung | ||||||||||||||||||||||||
Hinterlegt von: | Jilke, Lukas | ||||||||||||||||||||||||
Hinterlegt am: | 09 Sep 2024 08:09 | ||||||||||||||||||||||||
Letzte Änderung: | 09 Sep 2024 08:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags