elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Federated Physics-Informed Machine Learning for Ultrasonic Structural Health Monitoring of Aircraft Structures

Jilke, Lukas und Raddatz, Florian und Hosters, Norbert und Behr, Marek und Wende, Gerko (2024) Federated Physics-Informed Machine Learning for Ultrasonic Structural Health Monitoring of Aircraft Structures. 9th European Congress on Computational Methods in Applied Sciences and Engineering, 2024-06-03 - 2024-06-07, Lissabon, Portugal.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Structural health monitoring (SHM) systems employing ultrasonic guided waves have the capability to effectively monitor composite aerospace structures and detect instances of material degradation. In recent years, an increasing number of machine learning methods in structural health monitoring have emerged, leveraging their capacity to detect anomalies. This can serve as a foundation for predicting maintenance requirements and improving the operational efficiency of aircraft. However, large amounts of labeled sensor datasets for pristine and representative damaged specimens are required for supervised machine learning methods to generate reliable predictions. This is a major challenge, especially for a broad range of damages and flaws in composite materials. Additionally, the application of federated learning in operational aircraft fleets based on SHM data aims to enhance prediction accuracy by enabling collaborative model training across decentralized aircraft. Incorporating physical knowledge into the loss function of the neural network within a decentralized federated learning architecture can lead to a reduction in the amount of labeled datasets required, allowing for collaborative learning throughout aircraft fleets while preserving data privacy. As a first step towards integrating guided waves propagation behavior into the neural network's training process, multiple Physics-Informed Neural Networks embedded into a federated learning architecture is introduced as a semi-unsupervised federated learning approach incorporating the linear second-order partial differential acoustic wave equation.

elib-URL des Eintrags:https://elib.dlr.de/206258/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Federated Physics-Informed Machine Learning for Ultrasonic Structural Health Monitoring of Aircraft Structures
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jilke, Lukaslukas.jilke (at) dlr.dehttps://orcid.org/0000-0001-6879-3279NICHT SPEZIFIZIERT
Raddatz, FlorianFlorian.Raddatz (at) dlr.dehttps://orcid.org/0000-0002-0660-7650NICHT SPEZIFIZIERT
Hosters, NorbertRWTH Aachen UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Behr, MarekRWTH Aachen UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wende, Gerkogerko.wende (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:3 Juni 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Structural health monitoring (SHM), Machine Learning, Physics-Informed Neural Network, Federated Learning
Veranstaltungstitel:9th European Congress on Computational Methods in Applied Sciences and Engineering
Veranstaltungsort:Lissabon, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:3 Juni 2024
Veranstaltungsende:7 Juni 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien, R - Maschinelles Lernen
Standort: Aachen
Institute & Einrichtungen:Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung
Hinterlegt von: Jilke, Lukas
Hinterlegt am:09 Sep 2024 08:09
Letzte Änderung:09 Sep 2024 08:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.