Bussemaker, Jasper und Saves, Paul und Bartoli, Nathalie und Lefebvre, Thierry und Nagel, Björn (2024) Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints. In: AIAA Aviation Forum and ASCEND, 2024. American Institute of Aeronautics and Astronautics. AIAA AVIATION Forum 2024, 2024-07-29 - 2024-08-02, Las Vegas, NV, USA. doi: 10.2514/6.2024-4401. ISBN 978-162410716-0.
PDF
2MB |
Kurzfassung
System Architecture Optimization (SAO) can support the design of novel architectures by formulating the architecting process as an optimization problem. The exploration of novel architectures requires physics-based simulation due to a lack of prior experience to start from, which introduces two specific challenges for optimization algorithms: evaluations become more expensive (in time) and evaluations might fail. The former challenge is addressed by Surrogate-Based Optimization (SBO) algorithms, in particular Bayesian Optimization (BO) using Gaussian Process (GP) models. An overview is provided of how BO can deal with challenges specific to architecture optimization, such as design variable hierarchy and multiple objectives: specific measures include ensemble infills and a hierarchical sampling algorithm. Evaluations might fail due to non-convergence of underlying solvers or infeasible geometry in certain areas of the design space. Such failed evaluations, also known as hidden constraints, pose a particular challenge to SBO/BO, as the surrogate model cannot be trained on empty results. This work investigates various strategies for satisfying hidden constraints in BO algorithms. Three high-level strategies are identified: rejection of failed points from the training set, replacing failed points based on viable (non-failed) points, and predicting the failure region. Through investigations on a set of test problems including a jet engine architecture optimization problem, it is shown that best performance is achieved with a mixed-discrete GP to predict the Probability of Viability (PoV), and by ensuring selected infill points satisfy some minimum PoV threshold. This strategy is demonstrated by solving a jet engine architecture problem that features at 50% failure rate and could not previously be solved by a BO algorithm. The developed BO algorithm and used test problems are available in the open-source Python library SBArchOpt.
elib-URL des Eintrags: | https://elib.dlr.de/205742/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 29 Juli 2024 | ||||||||||||||||||||||||
Erschienen in: | AIAA Aviation Forum and ASCEND, 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.2514/6.2024-4401 | ||||||||||||||||||||||||
Verlag: | American Institute of Aeronautics and Astronautics | ||||||||||||||||||||||||
ISBN: | 978-162410716-0 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | sbo sao architecture optimization bayesian optimization hidden constraints | ||||||||||||||||||||||||
Veranstaltungstitel: | AIAA AVIATION Forum 2024 | ||||||||||||||||||||||||
Veranstaltungsort: | Las Vegas, NV, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 29 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 August 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||||||
Standort: | Hamburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemarchitekturen in der Luftfahrt > Flugzeugentwurf und Systemintegration | ||||||||||||||||||||||||
Hinterlegt von: | Bussemaker, Jasper | ||||||||||||||||||||||||
Hinterlegt am: | 18 Nov 2024 13:15 | ||||||||||||||||||||||||
Letzte Änderung: | 26 Nov 2024 12:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags