elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints

Bussemaker, Jasper und Saves, Paul und Bartoli, Nathalie und Lefebvre, Thierry und Nagel, Björn (2024) Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints. In: AIAA Aviation Forum and ASCEND, 2024. American Institute of Aeronautics and Astronautics. AIAA AVIATION Forum 2024, 2024-07-29 - 2024-08-02, Las Vegas, NV, USA. doi: 10.2514/6.2024-4401. ISBN 978-162410716-0.

[img] PDF
2MB

Kurzfassung

System Architecture Optimization (SAO) can support the design of novel architectures by formulating the architecting process as an optimization problem. The exploration of novel architectures requires physics-based simulation due to a lack of prior experience to start from, which introduces two specific challenges for optimization algorithms: evaluations become more expensive (in time) and evaluations might fail. The former challenge is addressed by Surrogate-Based Optimization (SBO) algorithms, in particular Bayesian Optimization (BO) using Gaussian Process (GP) models. An overview is provided of how BO can deal with challenges specific to architecture optimization, such as design variable hierarchy and multiple objectives: specific measures include ensemble infills and a hierarchical sampling algorithm. Evaluations might fail due to non-convergence of underlying solvers or infeasible geometry in certain areas of the design space. Such failed evaluations, also known as hidden constraints, pose a particular challenge to SBO/BO, as the surrogate model cannot be trained on empty results. This work investigates various strategies for satisfying hidden constraints in BO algorithms. Three high-level strategies are identified: rejection of failed points from the training set, replacing failed points based on viable (non-failed) points, and predicting the failure region. Through investigations on a set of test problems including a jet engine architecture optimization problem, it is shown that best performance is achieved with a mixed-discrete GP to predict the Probability of Viability (PoV), and by ensuring selected infill points satisfy some minimum PoV threshold. This strategy is demonstrated by solving a jet engine architecture problem that features at 50% failure rate and could not previously be solved by a BO algorithm. The developed BO algorithm and used test problems are available in the open-source Python library SBArchOpt.

elib-URL des Eintrags:https://elib.dlr.de/205742/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bussemaker, JasperJasper.Bussemaker (at) dlr.dehttps://orcid.org/0000-0002-5421-6419NICHT SPEZIFIZIERT
Saves, PaulNICHT SPEZIFIZIERThttps://orcid.org/0000-0001-5889-2302NICHT SPEZIFIZIERT
Bartoli, NathalieONERANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lefebvre, Thierrythierry.lefebvre (at) onera.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nagel, Björnbjörn.nagel (at) dlr.dehttps://orcid.org/0000-0001-8076-9853NICHT SPEZIFIZIERT
Datum:29 Juli 2024
Erschienen in:AIAA Aviation Forum and ASCEND, 2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2024-4401
Verlag:American Institute of Aeronautics and Astronautics
ISBN:978-162410716-0
Status:veröffentlicht
Stichwörter:sbo sao architecture optimization bayesian optimization hidden constraints
Veranstaltungstitel:AIAA AVIATION Forum 2024
Veranstaltungsort:Las Vegas, NV, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 Juli 2024
Veranstaltungsende:2 August 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Hamburg
Institute & Einrichtungen:Institut für Systemarchitekturen in der Luftfahrt > Flugzeugentwurf und Systemintegration
Hinterlegt von: Bussemaker, Jasper
Hinterlegt am:18 Nov 2024 13:15
Letzte Änderung:26 Nov 2024 12:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.