elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Application of Temperature-Sensitive Paint for transition detection on an NLF forward-swept wing under harmonic pitch oscillation at flight-relevant Mach and Reynolds numbers

van Hinsberg, Nils Paul und Henne, Ulrich und Klein, Christian (2024) Application of Temperature-Sensitive Paint for transition detection on an NLF forward-swept wing under harmonic pitch oscillation at flight-relevant Mach and Reynolds numbers. In: 21st International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics 2024 (156), Seiten 1-30. 21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics 2024, 2024-07-08 - 2024-07-11, Lisbon, Portugal.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://lisbon-lasersymposium.org/site/speakers/?speakerdetail=223653&trackid=0&a=lxlaser2024#!

Kurzfassung

To reduce the fuel consumption and emissions of next generation commercial aircraft, the highly promising natural laminar flow (NLF) technology is being implemented more and more frequently. By maintaining a laminar flow over the largest possible area of both wings through either passive or active measures, the overall aircraft friction drag over these surfaces can be significantly reduced, which results in a distinct increase in the aerodynamic performance of the aircraft. To raise the Technology Readiness Level of this laminar technology in aircraft design, an NLF forward-swept wing fuselage-belly-fairing configuration was designed in the KoPa 33 research initiative ECOWING. In the LuFo VI-2 successor project ULTIMATE, joint wind tunnel experiments in the European Transonic Windtunnel and Computational Fluid Dynamics simulations have been performed on this specific configuration. The various point-wise (e.g. unsteady pressure sensors, static pressure taps, temperature sensors, and accelerometers) and optical measurement techniques that were applied in the wind tunnel tests included also time-resolved cryogenic Temperature-Sensitive Paint (cryoTSP). This latter optical measurement technique was implemented to obtain in particular the location and dynamic motion of the boundary-layer transition on the upper (hence, suction) surface of the forward-swept wing model. The first test campaign, i.e. the performance test, demonstrated a clear influence of variations in flight relevant Mach and Reynolds numbers – both under on-design and off-design conditions – on the spanwise transition distribution, the resultant amount of laminarity over the wing, and the boundary layer transition mechanisms for a wide range of static pitch angles and during various quasi-steady pitch-sweeps at selected Mach and Reynolds numbers. In the current paper, the emphasis is placed on the TSP results of the subsequent dynamic test, in which the focus was shifted to the aerodynamic behavior of the NLF forward-swept wing while forced to perform a harmonic pitch oscillation using a newly-designed pitch oscillator. Besides isolated and combined variations in the Mach and Reynolds number, the influences of the mean angle, amplitude, and reduced frequency of the pitch oscillations were captured successfully by TSP. The analysis of the data using the “D0-method”, an alternative to the “DIT-method”, namely revealed distinct changes in both the location and dynamics of the transition line during pitching limit-cycle oscillations, induced by a separate altering of the value of each of the test parameters. Moreover, it was demonstrated that absolute motions of the transition location as small as O(10−4) m could accurately be resolved by the TSP technique.

elib-URL des Eintrags:https://elib.dlr.de/205480/
Dokumentart:Konferenzbeitrag (Vortrag)
Zusätzliche Informationen:Aerodynamics II
Titel:Application of Temperature-Sensitive Paint for transition detection on an NLF forward-swept wing under harmonic pitch oscillation at flight-relevant Mach and Reynolds numbers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
van Hinsberg, Nils Paulnils.vanhinsberg (at) dlr.dehttps://orcid.org/0000-0001-7411-333X164364572
Henne, Ulrichulrich.henne (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klein, Christianchristian.klein (at) dlr.dehttps://orcid.org/0000-0001-7592-6922164364574
Datum:Juli 2024
Erschienen in:21st International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-30
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
NICHT SPEZIFIZIERTADAINICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Name der Reihe:Conference Proceedings online
Status:veröffentlicht
Stichwörter:laminar-turbulent transition; forward-swept wing; temperature-sensitive paint; natural laminar flow; transonic flow; harmonic pitch oscillation; commercial transportation aircraft; ETW
Veranstaltungstitel:21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics 2024
Veranstaltungsort:Lisbon, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 Juli 2024
Veranstaltungsende:11 Juli 2024
Veranstalter :University of Coimbra, Portugal
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO
Hinterlegt von: Micknaus, Ilka
Hinterlegt am:26 Jul 2024 13:49
Letzte Änderung:26 Jul 2024 13:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.