Hellekes, Jens und Mühlhaus, Manuel Nikolas und Bahmanyar, Gholamreza und Azimi, Seyedmajid und Kurz, Franz (2024) VETRA: A Dataset for Vehicle Tracking in Aerial Imagery - New Challenges for Multi-Object Tracking. In: European Conference on Computer Vision, ECCV. Springer Nature. European Conference on Computer Vision (ECCV), 2024-09-29 - 2024-10-04, Mailand, Italien. (im Druck)
PDF
8MB |
Kurzfassung
The informative power of traffic analysis can be enhanced by considering changes in both time and space. Vehicle tracking algorithms applied to drone videos provide a better overview than street-level surveillance cameras. However, existing aerial MOT datasets only address stationary settings, leaving the performance in moving-camera scenarios covering a considerably larger area unknown. To fill this gap, we present VETRA, a dataset for vehicle tracking in aerial imagery introducing heterogeneity in terms of camera movement, frame rate, as well as type, size and number of objects. When dealing with these challenges, state-of-the-art online MOT algorithms experience a decrease in performance compared to other benchmark datasets. The integration of camera motion compensation and an adaptive search radius enables our baseline algorithm to effectively handle the moving field of view and other challenges inherent to VETRA, although potential for further improvement remains. Making the dataset available to the community adds a missing building block for both testing and developing vehicle tracking algorithms for versatile real-world applications. VETRA can be downloaded here: https://www.dlr.de/en/eoc/vetra
elib-URL des Eintrags: | https://elib.dlr.de/205389/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | VETRA: A Dataset for Vehicle Tracking in Aerial Imagery - New Challenges for Multi-Object Tracking | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Erschienen in: | European Conference on Computer Vision, ECCV | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||||||||||
Status: | im Druck | ||||||||||||||||||||||||
Stichwörter: | Multi-object tracking (MOT) Vehicle tracking dataset Aerial image sequences | ||||||||||||||||||||||||
Veranstaltungstitel: | European Conference on Computer Vision (ECCV) | ||||||||||||||||||||||||
Veranstaltungsort: | Mailand, Italien | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 29 September 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 4 Oktober 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - MoDa - Models and Data for Future Mobility_Supporting Services, V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz, V - ELK - Emissionslandkarte | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Hellekes, Jens | ||||||||||||||||||||||||
Hinterlegt am: | 25 Jul 2024 13:24 | ||||||||||||||||||||||||
Letzte Änderung: | 25 Jul 2024 13:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags