elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Effect of Flow Separation on Discrete Gust Loads for a Free-Flying Elastic Aircraft

Feldwisch, Johan Moritz (2024) Effect of Flow Separation on Discrete Gust Loads for a Free-Flying Elastic Aircraft. International Forum on Aeroelasticity and Structural Dynamics, IFASD 2024, 2024-06-17 - 2024-06-20, Den Haag, Niederlande.

[img] PDF
1MB

Kurzfassung

Shock motion and flow separation are aerodynamic nonlinearities, which have a significant effect on dynamic gust loads but are not accounted for in time-linearized aerodynamic models. Gust disturbances are not necessarily small and may cause local regions with flow separation during the gust encounter. The detached flow limits the total lift which is promising for a passive reduction of aerodynamic loads. This potentially yields lighter load carrying structures which in turn may improve the overall aircraft performance. This work investigates the reduction of distributed gust loads due to detached flow for an elastic, free-flying aircraft in an open-loop simulation with discrete gust disturbances defined by CS25. The DLR TAU-Code is utilized to solve the URANS equations. Different turbulence models (Spalart-Allmaras, RSM SSG/LRR-ln$\omega$) are applied, as predicting the flow separation correctly remains a problem. The time-linearized solution serves as reference and is obtained by scaling the time-marching responses to small gust amplitudes at the same gust gradients. The nonlinear simulation results are compared with the linear solution, to assess the potential of the load reduction. The investigated transport aircraft is the NASA Common Research model. The results show that the SA and RSM predict similar loads for cases with attached flow. For medium to long gust gradients large regions of the outer wing show flow separation during the gust encounter. Even though simulations with both turbulence models predict large regions with detached flow, the dynamics of the shock motion and the flow separation are different. The SA turbulence model predicts drastic changes of the aerodynamic loads at the wing tip and thus excites structural oscillations which are not seen with the RSM. A reduction of the maximum root bending moment between -16 % to -24 % is found for the RSM compared to the time-linearized solution. For the SA turbulence model, this deviation is in the range of -21 % to -29 %.

elib-URL des Eintrags:https://elib.dlr.de/205339/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Effect of Flow Separation on Discrete Gust Loads for a Free-Flying Elastic Aircraft
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Feldwisch, Johan MoritzJohan.Feldwisch (at) dlr.dehttps://orcid.org/0000-0002-4522-3721NICHT SPEZIFIZIERT
Datum:17 Juni 2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Gust, Loads, Unsteady Aerodynamics, aeroelasticity,Flow separation, CFD, CSM, nonlinear, CRM, turbulence models
Veranstaltungstitel:International Forum on Aeroelasticity and Structural Dynamics, IFASD 2024
Veranstaltungsort:Den Haag, Niederlande
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 Juni 2024
Veranstaltungsende:20 Juni 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Lastanalyse und Entwurf
Hinterlegt von: Feldwisch, Johan Moritz
Hinterlegt am:05 Aug 2024 11:35
Letzte Änderung:05 Aug 2024 11:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.