Eftimova, Elena und Nellinger, Christoph und Koch, Tobias (2024) Data-driven reconstruction of processes from pedestrian trajectories. In: Annual Modeling and Simulation Conference, ANNSIM 2024. 2024 Annual Modeling and Simulation Conference (ANNSIM’24), 2024-05-20 - 2024-05-23, Washington D.C., USA. doi: 10.23919/ANNSIM61499.2024.10732881. ISBN 978-171389931-0.
![]() |
PDF
- Nur DLR-intern zugänglich
340kB |
Kurzfassung
Agent-based simulations can be helpful in understanding the complex dynamics of human behavior. Datadriven approaches for this purpose show to be promising in extracting complex features, without relying on system-specific expert knowledge. This work aims to develop a data-driven approach that enables automatic generation of agent-based pedestrian flow models, by extracting and classifying regions of interest from trajectory data. For validation purposes, synthetic data from a pedestrian movement simulation was used for the method development. We identify stay point areas from the resulting trajectories, classify the processes occurring in these areas, and reconstruct their properties. The relevant areas and types of processes were successfully extracted in four different case scenarios. However, it is necessary to test and subsequently improve these methods by using real data. Ultimately, our methods should be applied for the automatic modeling of pedestrian behavior in critical infrastructures, such as a railway station or an airport.
elib-URL des Eintrags: | https://elib.dlr.de/205120/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Data-driven reconstruction of processes from pedestrian trajectories | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | Annual Modeling and Simulation Conference, ANNSIM 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.23919/ANNSIM61499.2024.10732881 | ||||||||||||||||
ISBN: | 978-171389931-0 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | data-driven, agent-based, stay point detection, process analysis | ||||||||||||||||
Veranstaltungstitel: | 2024 Annual Modeling and Simulation Conference (ANNSIM’24) | ||||||||||||||||
Veranstaltungsort: | Washington D.C., USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 20 Mai 2024 | ||||||||||||||||
Veranstaltungsende: | 23 Mai 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Automated Model Generation | ||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||||||
Hinterlegt von: | Eftimova, Elena | ||||||||||||||||
Hinterlegt am: | 02 Jul 2024 09:57 | ||||||||||||||||
Letzte Änderung: | 19 Feb 2025 14:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags