elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology

Kaps, Arndt und Lauer, Axel und Kazeroni, Rémi und Stengel, Martin und Eyring, Veronika (2024) Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology. Earth System Science Data, Seiten 1-16. Copernicus Publications. doi: 10.5194/essd-16-3001-2024. ISSN 1866-3508.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
7MB

Offizielle URL: https://doi.org/10.5194/essd-16-3001-2024

Kurzfassung

We present the new Cloud Class Climatology (CCClim) dataset, quantifying the global distribution of established morphological cloud types over 35 years. CCClim combines active and passive sensor data with machine learning (ML) and provides a new opportunity for improving the understanding of clouds and their related processes. CCClim is based on cloud property retrievals from the European Space Agency’s (ESA) Cloud_cci dataset, adding relative occurrences of eight major cloud types, designed to be similar to those defined by the World Meteorological Organization (WMO) at 1° resolution. The ML framework used to obtain the cloud types is trained on data from multiple satellites in the afternoon constellation (A-Train). Using multiple spaceborne sensors reduces the impact of single-sensor problems like the difficulty of passive sensors to detect thin cirrus or the small footprint of active sensors. We leverage this to generate sufficient labeled data to train supervised ML models. CCClim’s global coverage being almost gapless from 1982 to 2016 allows for performing process-oriented analyses of clouds on a climatological timescale. Similarly, the moderate spatial and temporal resolutions make it a lightweight dataset while enabling straightforward omparison to climate models. CCClim creates multiple opportunities to study clouds, of which we sketch out a few examples. Along with the cloudtype frequencies, CCClim contains the cloud properties used as inputs to the ML framework, such that all cloud types can be associated with relevant physical quantities. CCClim can also be combined with other datasets such as reanalysis data to assess the dynamical regime favoring the occurrence of a specific cloud type in association with its properties. Additionally, we show an example of how to evaluate a global climate model by comparing CCClim with cloud types obtained by applying the same ML method used to create CCClim to output from the icosahedral nonhydrostatic atmosphere model (ICON-A). CCClim can be accessed via the following digital object identifier: https://doi.org/10.5281/zenodo.8369202 (Kaps et al., 2023b).

elib-URL des Eintrags:https://elib.dlr.de/205038/
Dokumentart:Zeitschriftenbeitrag
Titel:Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kaps, ArndtDLR, IPAhttps://orcid.org/0000-0002-5368-5950162458448
Lauer, AxelDLR, IPAhttps://orcid.org/0000-0002-9270-1044NICHT SPEZIFIZIERT
Kazeroni, RémiDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stengel, MartinDWD, Offenbach, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:27 Juni 2024
Erschienen in:Earth System Science Data
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.5194/essd-16-3001-2024
Seitenbereich:Seiten 1-16
Verlag:Copernicus Publications
ISSN:1866-3508
Status:veröffentlicht
Stichwörter:clouds, climate, machine learning, remote sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Kaps, Arndt
Hinterlegt am:01 Jul 2024 11:31
Letzte Änderung:01 Jul 2024 12:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.