Helmke, Hartmut und Kleinert, Matthias und Ahrenhold, Nils und Klamert, Lucas und Madikeri, Srikanth und Motlicek, Petr und Helmke, Hartmut und Kleinert, Matthias (2024) Contextual Biasing Methods for Improving Rare Word Detection in Automatic Speech Recognition. In: 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024-04-14 - 2024-04-19, Seoul, Republic of Korea. doi: 10.1109/ICASSP48485.2024.10447465. ISBN 979-835034485-1. ISSN 1520-6149.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
In specialized domains like Air Traffic Control (ATC), a notable challenge in porting a deployed Automatic Speech Recognition (ASR) system from one airport to another is the alteration in the set of crucial words that must be accurately detected in the new environment. Typically, such words have limited occurrences in training data, making it impractical to retrain the ASR system. This paper explores innovative word-boosting techniques to improve the detection rate of such rare words in the ASR hypotheses for the ATC domain. Two acoustic models are investigated: a hybrid CNN-TDNNF model trained from scratch and a pre-trained wav2vec2-based XLSR model fine-tuned on a common ATC dataset. The word boosting is done in three ways. First, an out-of-vocabulary word addition method is explored. Second, G-boosting is explored, which amends the language model before building the decoding graph. Third, the boosting is performed on the fly during decoding using lattice re-scoring. The results indicate that the G-boosting method performs best and provides an approximately 30-43% relative improvement in recall of the boosted words. Moreover, a relative improvement of up to 48% is obtained upon combining G-boosting and lattice-rescoring.
elib-URL des Eintrags: | https://elib.dlr.de/204829/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||
Titel: | Contextual Biasing Methods for Improving Rare Word Detection in Automatic Speech Recognition | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | April 2024 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/ICASSP48485.2024.10447465 | ||||||||||||||||||||||||||||||||||||
ISSN: | 1520-6149 | ||||||||||||||||||||||||||||||||||||
ISBN: | 979-835034485-1 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | Automatic speech recognition;air traffic control, domain adaptation, contextual biasing, rare word recognition | ||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | ||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Seoul, Republic of Korea | ||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 14 April 2024 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 19 April 2024 | ||||||||||||||||||||||||||||||||||||
Veranstalter : | IEEE Signal Processing Society | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Integrierte Flugführung | ||||||||||||||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Flugführung > Lotsenassistenz Institut für Flugführung > ATM-Simulation | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Diederich, Kerstin | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 25 Jul 2024 13:53 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 26 Jul 2024 13:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags