elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Segmentation and Vectorization of curbstones from high-resolution ortho images for test sites in Bavaria, Germany

Jose, Mariya (2024) Segmentation and Vectorization of curbstones from high-resolution ortho images for test sites in Bavaria, Germany. Masterarbeit, Leibniz Universität Hannover.

[img] PDF
28MB

Kurzfassung

Generating road networks manually has always been an ineffective and labour-intensive task. Accurate representation of road networks is crucial for various applications, including urban planning, infrastructure management, navigation systems, and especially autonomous vehicle development. In the realm of autonomous driving, the accurate detection of curbstones holds particular significance, as they serve as critical boundaries for vehicle navigation and safety. However, current methods for online curbstone detection at the site are fraught with challenges, including real-time processing constraints and environmental variability. Fortunately, the availability of high-resolution aerial imagery presents an opportunity for offline curbstone detection, enabling more comprehensive and accurate mapping of road networks. In this thesis, we address the problem of curbstone detection as an iterative graph generation task, wherein curbstone edges are detected vertex by vertex from initial curbstone candidates identified through segmentation. Leveraging techniques from imitation learning, we take a high-resolution ortho-image as input and output a graph representing the detected curbstones. Our approach endeavours to enhance the accuracy and robustness of road edge detection through several enhancements. We introduce a loss function, termed Slope Penalty loss, aimed at refining the model training process by addressing the slight variations in gradients of the predicted vertices. Our experimental evaluations underscore the effectiveness of these enhancements, as demonstrated through comparisons with the already existing curbstone detection algorithms. The proposed approach is tested over the city area of Munich, Bavaria, Germany.

elib-URL des Eintrags:https://elib.dlr.de/204820/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Segmentation and Vectorization of curbstones from high-resolution ortho images for test sites in Bavaria, Germany
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jose, MariyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2024
Open Access:Ja
Seitenanzahl:47
Status:veröffentlicht
Stichwörter:Segmentation, vectorization, UNet, ResNet, Imitation learning
Institution:Leibniz Universität Hannover
Abteilung:Institute of Photogrammetry and Geoinformation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Auer, Dr. Stefan
Hinterlegt am:25 Jul 2024 13:36
Letzte Änderung:25 Jul 2024 13:36

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.