Lenhard, Tamara und Weinmann, Andreas und Jäger, Stefan und Koch, Tobias (2024) YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection. In: 2024 IEEE International Conference on Image Processing, Seiten 2299-2305. IEEE International Conference on Image Processing (ICIP), 2024-10-27 - 2024-10-30, Abu Dhabi, Vereinigte Arabische Emirate. doi: 10.1109/ICIP51287.2024.10647355.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://2024.ieeeicip.org/conference-proceedings/
Kurzfassung
Predominant methods for image-based drone detection frequently rely on employing generic object detection algorithms like YOLOv5. While proficient in identifying drones against homogeneous backgrounds, these algorithms often struggle in complex, highly textured environments. In such scenarios, drones seamlessly integrate into the background, creating camouflage effects that adversely affect the detection quality. To address this issue, we introduce a novel deep learning architecture called YOLO-FEDER FusionNet. Unlike conventional approaches, YOLO-FEDER FusionNet combines generic object detection methods with the specialized strength of camouflage object detection techniques to enhance drone detection capabilities. Comprehensive evaluations of YOLO-FEDER FusionNet show the efficiency of the proposed model and demonstrate substantial improvements in both reducing missed detections and false alarms.
elib-URL des Eintrags: | https://elib.dlr.de/204777/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE International Conference on Image Processing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/ICIP51287.2024.10647355 | ||||||||||||||||||||
Seitenbereich: | Seiten 2299-2305 | ||||||||||||||||||||
Name der Reihe: | 2024 IEEE International Conference on Image Processing (ICIP) | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Drone detection, camouflage object detection, feature fusion, synthetic data | ||||||||||||||||||||
Veranstaltungstitel: | IEEE International Conference on Image Processing (ICIP) | ||||||||||||||||||||
Veranstaltungsort: | Abu Dhabi, Vereinigte Arabische Emirate | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 27 Oktober 2024 | ||||||||||||||||||||
Veranstaltungsende: | 30 Oktober 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Automated Model Generation | ||||||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||||||||||
Hinterlegt von: | Lenhard, Tamara | ||||||||||||||||||||
Hinterlegt am: | 24 Jun 2024 09:09 | ||||||||||||||||||||
Letzte Änderung: | 30 Okt 2024 07:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags